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Overview & Motivation (1)

This literature studies an important theme in environmental
macroeconomics, namely the effects economic policies (such
as public abatement or pollution taxation) on the
macroeconomic system and environmental quality

Issue typically studied in “linear models” in which gradual
changes in dirt emissions have gradual effects on the ecological
system. Bovenberg & Heijdra (1998, 2002) are examples of
this approach

Here is the 1 million euro question: Does nature respond
smoothly to gradual change?

Around the turn of the century prominent ecologists have
answered this question with a resounding NO!
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Overview & Motivation (2)

Scheffer et al. (2001) paper in Nature, entitled “Catastrophic
shifts in ecosystems” presents the (then) new view

ecosystems do not respond smoothly to gradual changes in dirt
flows
abrupt “catastrophic shifts” may be possible in the vicinity of
threshold points (no early warning signals)
multiple stable equilibria, irreversibility, and hysteresis are all
possible

The prototypical example of the phenomenon under
consideration concerns shallow lakes
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A literal shallow lake
⊲ “One of the best-studied and most dramatic state shifts is the sudden

loss of transparency and vegetation observed in shallow lakes subject to

human-induced eutrophication. The pristine state of most shallow lakes is

probably one of clear water and a rich submerged vegetation. Nutrient

loading has changed this situation in many cases. Remarkably, water

clarity often seems to be hardly affected by increased nutrient

concentration until a critical threshold is passed, at which the lake shifts

abruptly from clear to turbid. With this increase in turbidity, submerged

plants largely disappear. Associated loss of animal diversity and reduction

of the high algal biomass makes this state undesired. Reduction of

nutrient concentrations is often insufficient to restore the vegetated clear

state. Indeed, the restoration of clear water happens at substantially

lower nutrient levels than those at which the collapse of the vegetation

occurred.” [colored emphasis added]

Scheffer et al. (2001, p. 592)
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Overview & Motivation (3)

The ecological dynamics under consideration now carries the
name Shallow-Lake Dynamics (SLD)

Objective of the first hour today: to study the effects of public
abatement activities on the environment and on the economic
system when the former system features SLD

Mode of attack:

Basic representative-agent model of a closed economy
Ecology features SLD
Model solutions explained analytically
Non-linear system of differential equations is solved numerically
Size versus duration tradeoff
Welfare analysis: first-best versus second-best
Robustness check: alternative model assumptions
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Pollution dynamics

Flow of dirt:

D(t) ≡ κK(t)− γG(t), κ > 0, γ > 0 (S1)

K(t) is the capital stock
G(t) is government abatement
D(t) is the flow of dirt; feasibility constraint: D(t) ≥ 0

Dynamic evolution of the pollution stock:

Ṗ (t) = −πP (t) +
P (t)2

P (t)2 + 1
+D(t), 1

2 < π < 3
√
3

8 (S2)

first term on the RHS of (S2): stable regeneration
second term on the RHS of (S2): shallow-lake dynamics (SLD)
π > 1

2 implies that nature contains no irreversibilities

See Figure 1 for dynamics of P (t)
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Figure 1: Ecological dynamics
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Key features of Figure 1

threshold points DL (below C) and DU (below B)

dashed branch between C and B unstable

two stable branches (solid lines)

for D̂0 two, welfare-rankable, stable equilibria (D and A)

ecological system features reversible hysteresis: A temporary
dirt reduction can move the ecology from D to A
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Households (1)

Infinitely-lived representative agent

Lifetime utility function:

Λ(t) ≡

∫ ∞

t

[

lnC(τ) + εE ln
(

Ē − P (τ)
)

]

e−ρ(τ−t)dτ (S3)

C(τ) is consumption
E(τ) ≡ Ē − P (τ) measures the quality of the environment
εE is the utility weight of environmental quality
ρ is the pure rate of time preference

Household budget identity:

Ȧ(τ) = r(τ)A(τ) + w(τ)− T (τ)− C(τ) (S4)

A(τ) is financial assets (Ȧ(τ) ≡ dA(τ)/dτ)
r(τ) is the interest rate
w(τ) is the wage rate
T (τ) is the lump-sum tax
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Households (2)

Labour supply is exogenous and equal to unity, so w(τ) also
stands for the household’s wage income

At time t, the agent chooses time paths for C(τ) and A(τ)
(τ ≥ t) in order to maximize (S3) subject to (S4), the initial
condition on assets, A(t), and the TVC

Solutions:

C(t) = ρ[A(t) +H(t)] (S5)

H(t) ≡

∫ ∞

t

[w(τ)− T (τ)] e−
∫
τ

t
r(s)dsdτ (S6)

Ċ(τ)

C(τ)
= r (τ)− ρ, τ ≥ t (S7)
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Firms (1)

Many, perfectly competitive firms (CRTS)

Representative firm

Production function:

Y (t) ≡ F (K(t), L(t)) = Ω0K(t)εLL(t)1−εL (S8)

Y (t) is gross output
L(t) is employment
Parameters: Ω0 > 0, 0 < εL < 1

Value of the firm:

V (t) =

∫ ∞

t

[

(1− θK(τ))
(

Y (τ)−w(τ)L(τ)
)

− I(τ)
]

e−
∫
τ

t
r(s)dsdτ

(S9)
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Firms (2)

Capital accumulation identity:

K̇(τ) = I(τ)− δK (τ) (S10)

First-order conditions:

w(τ) = FL (K(τ), L(τ)) (S11a)

r(τ) + δ

1− θK(τ)
= FK (K (τ) , L(τ)) (S11b)

It follows that V (t) = K(t) (no adjustment costs of
investment so Tobin’s q is equal to unity)
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General equilibrium

Model summarized in Table 1

Exogenous labour supply: LS(t) = 1

Government policies:

No capital taxation: θK(t) = 0
Government abatement activities: G(t)
Lump-sum tax balances the budget: G(t) = T (t)

Endogenous variables: C(t), Y (t), K(t), P (t), w(t), r(t),
L(t), and D(t)

Exogenous variable: G(t)

Figure 2. Saddle-point stable, dynamically efficient, unique
equilibrium at E0
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Table 1: The benchmark continuous-time model

(a) Economic system

Ċ(t)

C(t)
= r(t)− ρ, ρ > 0 (T1.1)

K̇(t) = Y (t)− C(t)−G(t)− δK(t) (T1.2)

[r(t) + δ]K(t) = (1− εL)Y (t) (T1.3)

w(t)L(t) = εLY (t) (T1.4)

Y (t) = Ω0L(t)
εLK(t)1−εL (T1.5)

L(t) = 1 (T1.6)

(b) Ecological system

Ṗ (t) = −πP (t) +
P (t)2

P (t)
2
+ 1

+D(t) (T1.7)

D(t) = κK(t)− γG(t), κ > 0, γ > 0 (T1.8)
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Figure 2: C-K dynamics in the core model
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Temporary abatement shock (1)

Initially at a steady-state equilibrium E0

No abatement initially, G(t) = 0 for t < 0

At time t = 0, an unanticipated and temporary increase in
G (t):

G(t) =







G for 0 ≤ t ≤ tE

0 for t > tE

(S12)

Qualitative adjustment path in Figure 2:

jump from E0 to A at impact (t = 0)
for 0 < t ≤ tE , gradual adjustment from A to B
arrive at B at time t = tE
for tE < t ≤ ∞, gradual adjustment from B to E0
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Temporary abatement shock (2)

Visualization of all adjustment paths in Figures 3(a)–(f)

Economic parameters: ρ = r̂ = 0.04, δ = 0.07, εL = 0.7,
Ω0 = 0.7401, and θK = 0

Steady-state features: K̂/Ŷ = 2.7273, Ŷ = 1,
Î = δK̂ = 0.1909, Ĉ = 0.8091

Ecological parameters: π = 0.52, κ = 0.0147, and γ = 0.3020

Steady-state features: DL = 0.0196, DU = 0.0735,
D̂0 = κK̂ = 0.04, two stable ecological equilibria: points A
(with P̂G = 0.0936) and D (with P̂B = 1.2482) in Figure 3(b).
The critical pollution stock associated with P̂0 is at point E
where PE = 0.6581

For G = 0.1 the minimum shock duration is tE = 41 years
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Figure 3(a): government abatement G(t)
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Figure 3(b): pollution dynamics Ṗ (t)
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Figure 3(c): capital stock K(t)
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Figure 3(d): consumption C(t)
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Figure 3(e): dirt flow D(t)
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Figure 3(f): pollution stock P (t)
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Size-duration tradeoff

A larger abatement shock can be maintained for a briefer
period (and yet be succesful) because adjustment is faster

Tradeoff between G and tE analyzed in Figure 4(a)

region to the left of the dashed line is infeasible (D ≥ 0
violated for some t during transition)
region to the right of the dashed line is feasible (D ≥ 0
satisfied for all t during transition)
tradeoff is downward sloping

Which (G, tE) combination is optimal?
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Figure 4(a): size G versus duration tE
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Welfare effects (1)

Two welfare questions

Question 1: which size-duration (G, tE) combination is
optimal?

⊲ Figure 4(b) plots optimized value of welfare Λ (0) as a
function of tE (with associated G value taken from the
size-duration tradeoff schedule)

⊲ “Cold-turkey” (or “big bang”) policy is best: minimum feasible
duration, maximum size (corner of the feasible region in Figure
4(a))
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Figure 4(b): welfare effect Λ(0)
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Welfare effects (2)

Question 2: starting in the dirty equilibrium at point D
(in Figure 1), where on the lower branch should the
equilibrium be moved to?

First-best equilibrium: move to the left of point A (lower
steady-state dirt flow). Internalize external pollution effect of
capital accumulation
⊲ Decentralized with G = 0 in the long run and a Pigouvian

capital tax: θK = κ
γ(ρ+δ)+κ

Second-best equilibrium: in the absence of a Pigouvian tax
instrument FBSO cannot be decentralized as privately optimal
savings behaviour leads to an equalization of the net marginal
product of capital to the rate of time preference, so that the
capital stock is equal to K̂ (> K̂f ). Move to point A
⊲ SBSO features G = 0 in the long run. Hence, move from D to

A in Figure 1 as fast as possible
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Overview of extensions

Endogenous labour supply Skip details

endogenous hours decision
tax-financed abatement policy increases both labour supply
and the capital stock for part of the transition period
this dirties the environment and makes it harder to steer the
economy from the dirty to the clean equilibrium

Finite lives and overlapping generations Skip details

exogenous labour supply
crowding out of capital during transition facilitates the
environmental cleanup
intergenerational redistribution effects during transition
role for debt policy: redistribution
effect of debt policy: hysteresis in the economic system
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Endogenous labour supply (1)

Change utility function:

Λ(t) ≡

∫ ∞

t

[

ln
(

C(τ)εC [1− L(τ)]1−εC
)

+ εE ln
(

Ē − P (τ)
)

]

e−ρ(τ−t)dτ (S13)

Change budget identity:

Ȧ (τ) = r(τ)A(τ) + w(τ)L (τ)− T (τ)− C(τ) (S14)

Optimal decision rules:

C(t) = ρεC [A(t) +H(t)] (S15a)

w(t) [1− L(t)] = ρ (1− εC) [A(t) +H(t)] (S15b)
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Endogenous labour supply (2)

Labour supply equation (replaces (T1.6) in Table 1):

w(t) [1− L(t)] =
1− εC
εC

C(t) (S16)

Phase diagram in Figure 5

Visualization in Figures 6(a)–(f)

For G = 0.1 we now need tE = 52 (rather than tE = 41) to
get from D to A. Labour supply effect makes environmental
policy more difficult

FBSO and SBSO both call for G = 0 in the long run
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Figure 5: C-K dynamics with endogenous labour supply

C(t)

K(t)

!

0
!

!

! E0

E1

C(0)

(K(t) = 0)0

.

(K(t) = 0)1

.

C(t) = 0
.

Ĉ
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Figure 6(a): capital stock K(t)
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Figure 6(b): consumption C(t)
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Figure 6(c): output Y (t)
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Figure 6(d): employment L(t)
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Figure 6(e): dirt flow D(t)
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Figure 6(f): pollution stock P (t)
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Overlapping generations (1)

Skip details

Perpetual-youth model: constant instantaneous probability of
death, µ > 0

Individual lifetime utility:

EΛ (v, t) ≡

∫ ∞

t

[

lnC(v, τ)+εE ln
(

Ē − P (τ)
)

]

e−(ρ+µ)(τ−t)dτ

(S17)

Budget identity under full annuitization:

Ȧ(v, τ) = [r (τ) + µ]A(v, τ) +w(τ)−C(v, τ)− T (τ) (S18)

r (τ) + µ is the rate of return on annuities
agents born bare of assets, A (v, v) = 0
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Overlapping generations (2)

Individual decision rules at time t:

C(v, t) = (ρ+ µ) [A(v, t) +H(t)] (S19)

H(t) ≡

∫ ∞

t

[w(τ)− T (τ)] e−
∫
τ

t
[r(s)+µ]dsdτ (S20)

Ċ (v, τ)

C (v, τ)
= r (τ)− ρ, τ ≥ t ≥ v (S21)

Aggregate implication for the “Euler equation” (replaces
(T1.1) in Table 1):

Ċ(t)

C(t)
= r(t)− ρ− µ(ρ+ µ)

K(t) +B(t)

C(t)
(S22)

Phase diagram (for B(t) = 0) in Figure 7

Visualization in Figures 8(a)–(f)
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Figure 7: C-K dynamics with overlapping generations
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Figure 8(a): consumption C(t)
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Figure 8(b): capital stock K(t)
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Figure 8(c): government abatement G(t) and taxes T (t)
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Figure 8(d): debt-output ratio B(t)/Y (t)
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Figure 8(e): dirt flow D(t)
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Figure 8(f): pollution stock P (t)
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Overlapping generations (3)

Government solvency condition:

B(t) =

∫ ∞

t

[T (τ)−G(τ)]e−
∫
τ

t
r(s)dsdτ (S23)

The bond policy that we consider takes the following form:

Debt is zero initially, i.e. B(0) = 0
Parametric tax path of the form T (t) = T0 + T1

[

1− e−ξt
]

for
t ≥ 0 and ξ > 0. Here T (0) = T0 stands for the initial tax,
T (∞) = T0 + T1 is the long-run tax, and ξ is the speed of
debt stabilization
Government solvency condition in terms of parameters:

∫

∞

0

[

T0 + T1

[

1− e−ξt
]]

e−
∫

τ

t
r(s)dsdτ = G

∫ tE

0

e−
∫

τ

t
r(s)dsdτ (S24)
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Overlapping generations (4)

An abatement cum debt policy consists of the vector
(G, tE , T0, T1, ξ) such that (i) tE is as small as feasible for the
given shock, and (ii) equation (S24) is satisfied by suitable
choice of T0 and/or T1

Without debt policy: G = 0.1 requires tE = 38 (slightly
quicker than core case, for which tE = 41)

With debt policy: G = 0.1 (T0 = 0.0616, T1 = 0.0290,
ξ = 0.1) requires tE = 37 (slightly quicker than core case).
Small amount of crowding out of the private capital stock by
debt
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Main findings

A proper public abatement policy takes a radically different
form than was previously thought if the ecology features
shallow-lake dynamics

A temporary policy may succeed in getting from the bad to
the good equilibrium. Abatement is an effective instrument for
that

There is a tradeoff between shock size and shock duration

From a second-best welfare perspective, a “cold-turkey policy”
is best

From a first-best welfare perspective, abatement should be
used temporarily and a capital tax should internalize the
external effects due to capital accumulation

Endogenous labour supply complicates policy, whilst finite lives
facilitate policy
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