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Chapter 1

What is public economics?

The purpose of this chapter is to discuss the following topics:

• What do we mean with public economics? What do public economists study?

• What have previous generations of economists written about this important field? A brief overview

of the relevant history of economic thought.

• What are the topics we treat in detail? Which topics are left out and why?

1.1 What is public economics?

1.1.1 Definition

??? to be added. Based on Atkinson and Stiglitz (1980, Lecture 1).

1.1.2 Potential reasons for government intervention

• Basic role to establish and enforce the “rules of the economic game”.

• Recall the basic theorems of welfare economics: if the economy is perfectly competitive and there

is a full set of markets then the equilibrium (if it exists) is Pareto-efficient (no one can be made

better off without someone else being made worse off).

• Further intervention may nevertheless be called for because:

– Pareto efficiency does not ensure that the resulting distribution of resources is in accordance

with the prevailing concepts of equity (redistribution).

– Economy may not be perfectly competitive so that market allocation is not Pareto-efficient.

– Full set of future and insurance markets may not exist (missing markets).

1



2 PUBLIC ECONOMICS: TOOLS AND TOPICS

– Full equilibrium may not always be reached (e.g. unemployment).

– There may be externalities like pollution or congestion (corrective taxation/subsidization).

– For public goods, the market-based supply will not generally be correct (e.g. defence, basic

research).

– “Merit wants”: state discourages “bad” things (e.g. alcohol, tobacco) and encourages “good”

things (e.g. education, social behaviour).

1.2 Who is who in public economics

??? to be added. Based on Musgrave (1959, 1985).

1.3 Topics included

These are the topics that will be covered in this course:

• “Positive” analysis of taxation policy.

– Taxation and labour supply.

– Taxation and saving.

– Taxation and risk taking.

– Taxation and the firm.

– Tax incidence.

– Taxation and economic growth.

• “Positive economics”: concerns with what is.

• “Normative” analysis of policy.

– Social welfare function.

– Structure of indirect taxation.

– Structure of income taxation.

– Provision of public goods.

– Dealing with externalities.

– Pensions and pension reform.

• “Normative”: concerns with what should be.
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1.4 Topics deliberately left out

It is impossible to cover the entire field of public economics in a one-semester masters course. I have left

out several topics that are very interesting:

• The political economy approach to public economics.

– There are some recent text books by Persson and Tabellini (2000), and Drazen (2000).

– Rationale for leaving out this topic: it warrants entire course in itself. Few robust results.

• Environmental taxation. Some examples can be used throughout the course. This is not a specialist

environmental economics book.

• Tax avoidance and evasion.

• Law and economics.

• Public sector pricing [Belongs in a micro-regulation economics course].

• Local public sector [Belongs in a regional economics course].

• Cost benefit analysis [Interesting when very applied].

• International taxation issues [Belongs in an open-economy macro course].

• Public provision of education.

• Public health care system.

• Fiscal federalism: tax competition, debt and stability pact [Belongs in an open-economy macro

course].

• Social choice theory [very very technical].

1.5 Related literature

• There does not at this stage exist a single good textbook for this course. All students are never-

theless advised to purchase the following book which covers the taxation part quite well: Salanié

(2003).

• Since this book does not cover all the topics, additional teaching materials may be taken from the

following sources: Myles (1995), Atkinson and Stiglitz (1980), Atkinson (1995), Tresch (2002), Jha

(1998), Auerbach and Feldstein (1985, 1987, 2002a, 2002b), Heijdra and van der Ploeg (2002), Ihori

(1996), and de la Croix and Michel (2002).

• There is a website under construction for this book containing slides, problem sets, and model

solutions: http://www.heijdra.org/pubecon.htm
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Further reading

??? What should interested students read?

Key literature

• Atkinson & Stiglitz (1980, lecture 1), Myles (1995, ch. 1).

• Musgrave (1959, 1985).

• History of thought: Schumpeter (1954), Robbins (1998), and Ekelund and Hebert (1990).

• Tools: Hausman (1981)
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Positive economics

5





Chapter 2

Taxation and the supply of labour

The purpose of this chapter is to discuss the following topics:

• How can we model the labour supply decision of a representative agent?

• Can we move beyond the representative-agent model and study the supply of labour by the fam-

ily?

• How do linear taxes, non-linear taxes, and unemployment benefits affect the labour supply deci-

sion by households?

• What does the empirical evidence say about the crucial elasticities appearing in the various mod-

els?

In this chapter we will focus on static models of labour supply (dynamic models are treated in Chapter

3). We study the effects of both linear and non-linear tax systems on labour supply. In addition to the

supply of hours decision we also briefly touch on the so-called labour market participation decision. All

models discussed in this chapter abstract from risk and uncertainty (decision making under uncertainty

is studied in Chapter 4).

2.1 A basic model of labour supply

In this section we present a basic model of labour supply. This model is then used to study the effects

of various taxes on goods consumption and labour supply. The key assumptions we make are the fol-

lowing. First, we postulate a so-called representative agent who (among other things) chooses the optimal

number of hours to be supplied to the labour market. This representative agent can be interpreted either

(literally) as comprising a single-person household, or (more realistically) as the head of a multi-person

household making the family labour supply decisions. We abstract from heterogeneity by assuming that

7
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all households are exactly the same.1 The price of this assumption is that we cannot study the distribu-

tional aspects of taxation with this basic labour supply model. There are many identical households but

to cut down on the notation we normalize their number to unity.

Second, we assume that the representative household possesses all relevant information, i.e. he

knows all final goods and factor prices and tax rates with complete certainty. Third, we abstract from

dynamic considerations, such as the household’s decision to save, by employing a static model. Fourth,

in this section we restrict attention to the study of so-called linear (or “flat rate”) taxes. In such a tax

system, the marginal tax rate is constant, i.e. it does not depend on the size of the object or activity that

is being taxed.

2.1.1 Setting up the model

The utility function of the representative household is given by:

U = U(C, L̄ − L), (2.1)

where U is utility, C is goods consumption, L is the number of hours supplied to the labour market,

and L̄ is the exogenously given time endowment (L̄ − L is thus the amount of leisure enjoyed by the

household). We make the usual assumptions regarding the utility function, i.e. marginal utility of both

consumption and leisure is positive, though each at a diminishing rate, and indifference curves bulge

toward the origin (see, for example, Figure 2.1). In technical terms, the assumptions are represented as

follows:2

UC ≡ ∂U
∂C > 0, UL̄−L ≡ ∂U

∂(L̄−L)
> 0,

UCC ≡ ∂2U
∂C2 < 0, UL̄−L,L̄−L ≡ ∂2U

∂(L̄−L)2 < 0,

UC,L̄−L ≡ ∂2U
∂C∂(L̄−L)

R 0, UCCUL̄−L,L̄−L −
(
UC,L̄−L

)2
> 0.

(2.2)

The household budget restriction is given by:

P(1 + tC)C = M + WL − T (WL) , (2.3)

where P is the price of the consumption good, tC is the consumption tax, M is exogenous non-labour

income, W is the pre-tax wage rate, and T (WL) is the labour income tax function. This tax function is

linear in wage income and takes the following form:

T (WL) ≡ T0 + tLWL, (2.4)

1In Chapter 11 we relax this assumption and allow households to differ in various aspects.
2The assumptions ensure that the utility function is strictly quasi-concave in consumption and leisure. See Silberberg and Suen

(2001, pp. 140, 260) for the proof that indifference curves bulge toward the origin for such a function.
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where T0 is the lump-sum part of the labour income tax and tL is the marginal tax rate on labour. It is

assumed that the marginal tax rate is positive but less than unity, i.e. 0 < tL < 1. Of course, if T0 is

negative then it constitutes a lump-sum transfer from the tax authority to the household.

The household chooses C and L in order to maximize utility (2.1) subject to the budget constraint

(2.3) and taking into account the tax schedule (2.4). The Lagrangian associated with this standard opti-

mization problem is:

L ≡ U(C, L̄ − L) + λ [M − T0 + (1 − tL)WL − P(1 + tC)C] , (2.5)

where λ is the Lagrange multiplier. The first-order necessary conditions are ∂L/∂λ = 0 (yielding the

budget constraint) as well as:

∂L

∂C
= UC − λP(1 + tC) = 0, (2.6)

∂L

∂L
= −UL̄−L + λW(1 − tL) = 0. (2.7)

By eliminating the Lagrange multiplier from these first-order conditions we obtain an expression char-

acterizing the optimum choices:

λ =
UC

P(1 + tC)
=

UL̄−L

W(1 − tL)
⇒

UL̄−L

UC
= w∗, (2.8)

where w∗ is the after-tax real wage rate:

w∗ ≡
W

P

1 − tL

1 + tC
. (2.9)

The key thing to note about (2.9) is that, since the choice of hours is a marginal decision,3 it is also the

marginal labour income tax rate which features in the relevant real wage rate expression. Furthermore,

this wage rate depends not only on the gross real wage, w ≡ W/P, but also on both tL and tC. Although

tC is not directly applied to labour income, it nevertheless affects labour supply because it affects the

tax-inclusive price of goods and thus influences what the household can buy with his labour- and non-

labour income.

Equation (2.8) is an important expression which we will see time and again in various contexts.

According to (2.8), the household chooses goods consumption and labour supply in such a way that the

marginal rate of substitution between leisure and consumption (left-hand side of (2.8)) is equal to the

3With a marginal decision we mean that the household can vary L (and C) by infinitesimal amounts and can choose exactly the
number of seconds per day he wants to supply to the labour market. In reality, of course, the length of the working day may well
be fixed (say at 8 hours) so that the household faces the choice between working 8 hours or not working at all. We return to this
important issue of indivisible labour in Section 2.2 below where we study the labour market participation issue.
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after-tax real wage rate. We can illustrate the optimum choice of the household with the aid of Figure

2.1. In this figure, consumption is measured on the vertical axis and leisure on the horizontal axis. Given

the assumptions made about utility in (2.2) above, indifference curves bulge toward the origin—see the

line labeled U = U0. Using (2.4), the budget line (2.3) can be written as:

C + w∗ (L̄ − L) =
M − T0 + (1 − tL)WL̄

P(1 + tC)
[≡ Y0] , (2.10)

which is downward sloping in (C, L̄ − L) space—see the line AB in Figure 2.1. The left-hand side of

(2.10) is real spending on consumption goods and on leisure (so-called full consumption) whereas the

right-hand side is full income, i.e. total resources available to the household were it to supply its entire

labour endowment to the labour market. Of course, by definition the household is unable to supply

more labour than its time endowment, i.e. the total amount of leisure cannot exceed L̄. The feasible

region is thus the area 0ABC in Figure 2.1.

In the interior optimum, the slope of the indifference curve is equal to the slope of the budget line. As

drawn in the figure, this optimum occurs at point E0, where consumption is C∗ and leisure is (L̄ − L)
∗
.

We call an optimum such as at point E0 an interior solution to the optimization problem because the

first-order conditions hold with equality. If the household has a very strong preference for leisure,

however, it may very well be the case that a corner solution will be optimal, i.e. maximum utility will

be attained at point B. By using the Kuhn-Tucker conditions (see the Mathematical Appendix) we find

that UL̄−L/UC > w∗ in point B. Given w∗, the household would like to consume more leisure but the

feasibility constraint (L ≥ 0) prevents him from doing so. In the remainder we will largely ignore corner

solutions and instead focus on interior solutions.

2.1.2 Tax effects

Despite its simplicity, the model can already be used for tax policy analysis. There are three different

tax rates in the model, namely the lump-sum tax (T0), the marginal labour income tax rate (tL), and the

consumption tax rate (tC). In order to illustrate the effects on labour supply of these tax rates, we first

conduct a graphical analysis for the very special (but often used) case of homothetic preferences. The house-

hold has homothetic preferences if its utility function, U(C, L̄ − L), can be written as G (Ū(C, L̄ − L))

with G (·) strictly increasing and Ū(C, L̄ − L) homogeneous of degree one (linear homogeneous) in its

arguments.4

It is easy to see why homothetic preferences are so convenient to work with. Indeed, if U(C, L̄ − L)

4An example of a utility function representing homothetic preferences is:

U = ln
(

Cα [L̄ − L]
β
)

,

with α > 0 and β > 0. By writing G ≡ (α + β) ln Ū and Ū ≡ Cη [L̄ − L]
1−η

(with η ≡ α/ (α + β)) we easily find that U is
homothetic.
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Figure 2.1: Optimal consumption leisure choice

is homothetic, the marginal rate of substitution between leisure and consumption can be written as:

UL̄−L

UC
=

G′ (·) ŪL̄−L

G′ (·) ŪC
=

ŪL̄−L

ŪC
, (2.11)

where ŪL̄−L and ŪC are the partial derivatives of the Ū (·) function. But since Ū(·) is homogeneous

of degree one in its arguments, it follows that both ŪL̄−L and ŪC are homogeneous of degree zero, i.e.

they depend only on the consumption-leisure ratio, C/ (L̄ − L). By (2.11) we then obtain the result that

UL̄−L/UC is a unique function of C/ (L̄ − L) also, i.e. the so-called Income Expansion Path is linear and

passes through the origin. The advantage of working with a linear income expansion path lies in the

fact that once we know one tangency between an indifference curve and a budget line, we know the

position of all tangencies between budget lines of equal slope (but varying incomes) and corresponding

indifference curves.

To see this principle at work, consider the effects of a rise in the lump-sum tax. As is illustrated in

Figure 2.2, an increase in T0 leads to a parallel shift downward of the budget line (see also equation

(2.10) above). The feasible region shrinks from 0ABC to 0A′B′C. If the initial optimum is at E0 then it

must be the case that the new optimum is at point E1. The slope of the budget line is unchanged so the

household stays on the original income expansion path and just scales down consumption and leisure

in equal proportions (both consumption and leisure are thus so-called normal goods). A change in the

lump-sum tax thus only has an income effect. Utility falls, from U0 to U1, so even lump-sum taxes are

painful from the perspective of the household!

A rise in the labour income tax or consumption tax leads to both a shift and a rotation of the budget
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Figure 2.2: Increasing the lump-sum tax (homothetic case)

line (see (2.10) above). As a result there are both income effects (as before) and substitution effects. In

Figure 2.3 we illustrate the effects of an increase in the labour income tax, tL. The initial feasible region is

given by 0ABC and the initial optimum is at E0. As a result of the shock, the budget line rotates counter-

clockwise around point B (at that point, L = 0 and tL drops out of the budget line altogether). The new

feasible region is given by 0A′BC. We assume that the optimum shifts from E0 to E1, so that C falls, L̄− L

rises, and thus L falls. Utility also falls as a result of the tax increase, i.e. the indifference curve tangent

to E1 (not drawn) is associated with a lower utility level than the one for the initial situation (U1 < U0).

As usual, we can decompose the total effect on the variables into a pure substitution effect and an in-

come effect. To compute the pure substitution effect, we find out which point on the original indifference

curve the household would choose for the new after-tax real wage rate. In Figure 2.3 this is point E′

(the dashed line is parallel to the new budget line A′B). The pure substitution effect thus involves the

move from E0 to E′. It is easy to see that this effect is always positive for leisure and thus negative for

labour supply. Of course, the household is not actually able to move to point E′, because it does not lie

in its feasible region. The household would have to be compensated by a lump-sum transfer in order to

be able to choose E′. For that reason we often refer to the hypothetical choices holding utility constant,

compensated (or Hicksian) solutions.

The income effect consists of the move from E′ to E1. It is easy to see that the income effect is negative

for both consumption and leisure and is thus positive for labour supply. The case drawn in Figure 2.3

assumes that the substitution effect dominates the income effect in labour supply. It is quite possible,

however, for the labour supply curve to be backward bending, i.e. for the income effect to dominate

the substitution effect. For example, if there would be no substitution possible between consumption
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Figure 2.3: Increasing the labour income tax (homothetic case, dominant SE)

and leisure, so that U (·) takes the Leontief form,5 then there is no pure substitution effect and the new

optimum would be at E′′!

A more formal method to decompose the total effect into its constituent parts involves the famous

Slutsky equation. For labour supply this equation takes the following form:

∂L

∂w∗
=

(
∂L

∂w∗

)

U=U0

+ L
∂L

∂m0
, (2.12)

where m0 ≡ (M − T0) / [P (1 + tC)] is real non-labour income. This expression is derived formally

below, but let us first interpret it intuitively. The first term on the right-hand side is the pure substitution

effect (non-negative) whereas the second term is the income effect (negative if leisure is a normal good).

We reach an immediate insight from (2.12): if leisure is a normal good, then labour supply declines with

full income, i.e. the income effect is relatively unimportant for rich households (whose high non-labour

income will ensure a high level of full income). This rather subtle effect can be explained with the aid

of Figure 2.4 which is based on the assumption that the utility function is of the Leontief type, i.e. there

is no substitutability between consumption and leisure, the indifference curves are right angles, and

the pure substitution effect is zero. There are two agents. The poor agent has no non-labour income

(m0 = 0) and initially faces the budget line CD. In contrast, the rich agent has a very high level of non-

5A Leontief utility function has the following form:

U = min

(

[
C

α
,

L̄ − L

β

]

,

with α > 0 and β > 0. The slope of the income expansion path is C/ (L̄ − L) = α/β and the household keeps a constant
consumption-leisure proportion no matter what the real wage rate is.
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Figure 2.4: Increasing the labour income tax: the rich and the poor

labour income and initially faces the feasible choice set CER
0 A. By assumption, the level of this agent’s

non-labour income is such that he wants to consume exactly L̄ units of leisure, i.e. at point ER
0 labour

supply for the rich agent is zero. Since the agents have the same utility function, the income expansion

path curve passes through point ER
0 and it can be deduced that the poor agent’s initial optimum is at

point EP
0 . Now consider what happens if the labour income tax is increased. The budget lines rotate

counter-clockwise to ER
0 A′ (for the rich agent) and CD′ (for the poor agent). The rich agent stays at point

ER
0 but the poor agent experiences a large income effect which induces him to move from EP

0 to EP
1 .

To investigate the effect of the labour income tax for the general (non-Leontief) case, we first note

that labour supply can be written in general terms as L = L (w∗, m0), where w∗ is defined in (2.9) above

and the definition of m0 is given directly below (2.12). Next we differentiate this expression with respect

to tL (noting that tL affects w∗ but not m0):

∂L

∂tL
=

∂L

∂w∗

∂w∗

∂tL
. (2.13)

By noting the definitions of w∗ and using the Slutsky equation (2.12), we can rewrite this expression as

follows:

∂L

∂tL
= −

w

1 + tC

[(
∂L

∂w∗

)

U=U0

+ L
∂L

∂m0

]

. (2.14)

If labour supply is upward sloping, the term in round brackets on the right-hand side of (2.14) is positive

so that an increase in the tax rate reduces labour supply. Since the income effect is close to zero for
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wealthy households (provided leisure is a normal good), the supply of labour will certainly fall for such

households because the pure substitution effect is non-negative.

The Slutsky equation (2.12) can be derived by making use of standard duality results (see the In-

termezzo for a quick review of the basic duality tools used in this chapter). First, we define leisure as

H ≡ L̄ − L and note that the budget equation in real terms can be written as 1 C + w∗H = Y0, where Y0

is full income (see the left-hand side of equation (2.10) above). Note that consumption is the numeraire

commodity so its tax-inclusive price is 1 and w∗ represents the relative price of leisure. Second, we

define the expenditure and indirect utility functions as:

E (1, w∗, U0) ≡ min
{C,H}

1 C + w∗H subject to: U (C, H) = U0,

V (1, w∗, Y0) ≡ max
{C,H}

U (C, H) subject to: Y0 = 1 C + w∗H.

It follows that the Hicksian and Marshallian demands (denoted by superscripts “H” and “M”, respec-

tively) are given by:

CH (1, w∗, U0) =
∂E (1, w∗, U0)

∂1
, HH (1, w∗, U0) =

∂E (1, w∗, U0)

∂w∗
,

CM (1, w∗, Y0) = −
∂V(1,w∗,Y0)

∂1
∂V(1,w∗,Y0)

∂Y0

, HM (1, w∗, Y0) = −
∂V(1,w∗,Y0)

∂w∗

∂V(1,w∗,Y0)
∂Y0

.

From here on in we focus on the demand for leisure, leaving the demand for consumption goods as an

exercise.

Differentiating the Marshallian demand for leisure with respect to w∗ we get:

∂HM

∂w∗
=

(
∂HM

∂w∗

)

Y0 constant

+
∂HM

∂Y0

∂Y0

∂w∗

=

(
∂HM

∂w∗

)

Y0 constant

+ L̄
∂HM

∂Y0
, (2.15)

where we have used the definition of Y0 in the second step (i.e. ∂Y0/∂w∗ = L̄). Next, we note that

by definition we can derive the Hicksian demand by substituting the expenditure function into the

Marshallian demand (because Y0 = E (1, w∗, U0)):

HH (1, w∗, U0) = HM (1, w∗, E (1, w∗, U0)) .

By differentiating this expression with respect to w∗ we obtain an expression for the slope of the Hicksian

demand for leisure:

∂HH

∂w∗
=

(
∂HM

∂w∗

)

Y0 constant

+
∂HM

∂Y0

∂E (1, w∗, U0)

∂w∗
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=

(
∂HM

∂w∗

)

Y0 constant

+ HM ∂HM

∂Y0
, (2.16)

where we have used Shephard’s Lemma in the second step.

By combining (2.15) and (2.16), and noting that HH = HM = L̄− LM, we obtain the Slutsky equation

for leisure demand:

∂HM

∂w∗
=

∂HH

∂w∗
+ LM ∂HM

∂Y0
. (2.17)

Of course, (2.17) can also be written in terms of labour supply (as in (2.12) above) by noting that

∂HM/∂w∗ = −∂LM/∂w∗, ∂HH/∂w∗ = −∂LH/∂w∗, and ∂HM/∂Y0 = −∂LM/∂Y0.

Intermezzo 2.1

The expenditure function. This intermezzo introduces some very useful tools derived from

duality theory, which will be used time and again. A good and accessible source for this

material is Varian (1992) and Diamond and McFadden (1974). See also the Mathematical

Appendix for further details.

We focus on the two-good case for expositional purposes. In particular, X1 and X2 are the

two goods, P1 and P2 are their respective prices, and Y0 is lump-sum income. We define the

expenditure function, E (·), as the minimum level of lump-sum income the household needs

to spend in order to attain a given level of utility, U0, when faced with consumer prices P1

and P2. In formal terms we have:

E (P1, P2, U0) ≡ min
{X1,X2}

P1X1 + P2X2 subject to: U (X1, X2) = U0.

We next define the indirect utility function, V (·), as the maximum achievable utility level,

given prices P1 and P2 and lump-sum income Y0. Formally, we have:

V (P1, P2, Y0) ≡ max
{X1,X2}

U (X1, X2) subject to: Y0 = P1X1 + P2X2.

The following key properties can be derived for these functions.

First, under local non-satiation indirect utility, V (·), is strictly increasing in lump-sum

income, Y0, and we can find E (·) by inverting V (·) or vice versa. This property indicates

that the two functions are intimately linked to each other.

Second, the expenditure function, E (P1, P2, U0), is homogeneous of degree one in prices.

Intuitively, if all prices double then the household’s income needs to double also in order

to attain the same utility level. Since relative prices do not change in this experiment, the
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optimal consumption point is unchanged.

Third, the expenditure function, E (P1, P2, U0), is concave in prices.

Fourth, the expenditure function, E (P1, P2, U0), is strictly increasing in U0 and non-

decreasing in prices.

The fifth, very convenient property of the expenditure function concerns the derivation of

the compensated (Hicksian) demand curves. Indeed, using the superscript ‘H’ for ‘Hicksian’ we

find that the Hicksian demand for good i is simply the derivative of the expenditure function

with respect to the price of good i:

XH
i (P1, P2, U0) =

∂E (P1, P2, U0)

∂Pi
. (I.1)

This relationship is Shephard’s Lemma (also often referred to as the derivative property).

The sixth property deals with the derivation of the uncompensated (Marshallian) demand

curves. They are obtained from the indirect utility function by applying Roy’s Identity:

XM
i (P1, P2, Y0) = −

∂V(P1,P2,Y0)
∂Pi

∂V(P1,P2,Y0)
∂Y0

, (I.2)

where the superscript ‘M’ stands for ‘Marshallian’.

The seventh property deals with the relationship between Hicksian and Marshallian de-

mands. Indeed, it is identically true that substitution of the expenditure function into the

Hicksian demand yields the Marshallian demand, i.e.:

XM
i

(
P1, P2, E (P1, P2, U0)

︸ ︷︷ ︸

=Y0

)
≡ XH

i (P1, P2, U0) . (I.3)

This expression is quite useful because it allows a short-cut derivation of the Slutsky equa-

tion. In the first step, we differentiate (I.3) with respect to Pj and obtain:

∂XM
i

∂Pj
+

∂XM
i

∂Y0

∂E (P1, P2, U0)

∂Pj
=

∂XH
i

∂Pj
. (I.4)

In the second step we use (I.1) and (I.2) in (I.4) to get:

∂XM
i

∂Pj
=

∂XH
i

∂Pj
− XM

j

∂XM
i

∂Y0
. (I.5)

Note that (I.5) contains all Slutsky terms, i.e. not only “own” effects (like ∂XM
i /∂Pi) but also

“cross” effects (such as ∂XM
i /∂Pj for i 6= j).
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****

2.1.3 Non-linear taxes

Up to this point we have limited attention to the graphical analysis of linear taxes. We now extend

the basic model in the following directions. First, we recognize that most (labour) income tax systems

are progressive, in the sense that the average tax rate rises with the tax base. Second, we move beyond

the qualitative-graphical analysis by pursuing a quantitative-mathematical analysis of tax effects. This

approach will be used extensively throughout the book, for example in Chapters 6-7 on the theory of tax

incidence.

We augment the basic model by replacing the linear tax function (2.4) by the following general tax

function T(WL). We thus continue to assume that non-labour income is untaxed. We define the marginal

tax rate (tM) as the derivative of the tax function with respect to the tax base, i.e. tM ≡ dT(WL)/d(WL),

and the average tax rate (tA) is defined as the tax bill divided by the tax base, i.e. tA ≡ T(WL)/(WL).6

Of course, both tM and tA are not constants, but rather are functions of the tax base, WL.

The rest of the model unchanged, i.e. the utility function is still given by (2.1) and the household’s

budget equation is given by:

P(1 + tC)C = M + WL − T(WL)

≡ M + (1 − tA)WL, (2.18)

where we have used the definition of the average tax rate in the final expression. The household chooses

consumption and leisure in order to maximize utility (2.1) subject to the budget constraint (2.18) and

recognizes the progressivity of the tax system. The Lagrangian expression is now given by:

L ≡ U(C, L̄ − L) + λ [M + (1 − tA)WL − P(1 + tC)C] , (2.19)

so that the first-order necessary conditions are (2.18) and:

∂L

∂C
= UC − λP(1 + tC) = 0, (2.20)

∂L

∂L
= −UL̄−L + λW

[

(1 − tA)− L
dtA

dL

]

= 0. (2.21)

Equation (2.20) is the same as before (see (2.6) above) but the first-order condition for labour supply

is more complex (compare (2.21) with (2.7) above). In making the marginal decision about hours, the

6Note that the linear tax schedule (2.4) also represents a progressive tax system provided T0 is negative. The non-linear tax
schedule used in this subsection is more general because it can also incorporate the notion of rate progressivity, according to which
both the average and the marginal tax rate increase with the tax base.
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household not only takes into account that part of the additional wage income will be taxed away but it

also recognizes that the expansion in the tax base will increase the average tax rate due to the progres-

sivity of the tax system.

By differentiating tA ≡ T (WL) / (WL) with respect to L we can simplify the second term in square

brackets on the right-hand side of (2.21) to:

L
dtA

dL
= L

(WL) dT(WL)
dL − T (WL) dWL

dL

(WL)2

= L
(WL) dT(WL)

d(WL)
dWL
dL − T (WL) dWL

dL

(WL)2
= tM − tA. (2.22)

It thus follows from (2.20)-(2.22) that the income expansion path can be written as:

λ =
UC

P(1 + tC)
=

UL̄−L

W(1 − tM)
⇒

UL̄−L

UC
= w

1 − tM

1 + tC
, (2.23)

where w ≡ W/P is the gross real wage rate. Just as before, we reach the intuitive conclusion that the

marginal rate of substitution between leisure and consumption depends on the marginal (and not on the

average) tax rate facing households!

We continue to assume that the utility function is homothetic and define the substitution elasticity

between consumption and leisure as follows:

σ =
percentage change in C/(L̄ − L)

percentage change in UL̄−L/UC
≡

d ln(C/(L̄ − L))

d ln(UL̄−L/UC)
≥ 0, (2.24)

where σ measures how “easy” it is (in utility terms) for the household to substitute consumption for

leisure (or vice versa). Intuitively, if σ is low, substitution is rather difficult and there are sharp kinks

in the household’s indifference curves. Large changes in the relative price (w∗) are needed to produce

a given change in the consumption-leisure mix. Conversely, if σ is high, substitution is very easy and

indifference curves are fairly flat. Small changes in the relative price suffice to produce a given change

in the consumption-leisure mix.

Our quantitative analysis proceeds by loglinearizing the model around a given initial point and in-

vestigating changes in the variables that occur as a result of infinitesimal changes in the tax parameters.

Since this technique is used throughout the book, we show the details of the derivation here.7 First,

linearization of (2.23) is straightforward and results in:

d ln

(
UL̄−L

UC

)

= w̃ − t̃M − t̃C, (2.25)

7See also the Mathematical Appendix for further details.
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where w̃ ≡ dw/w, t̃M ≡ dtM/ (1 − tM), and t̃C ≡ dtC/ (1 + tC) are proportional changes in, respectively

w, tM, and tC.8 The left-hand side of (2.25) represents the proportional change in the marginal rate of

substitution between leisure and consumption (recall that d ln x = dx/x = x̃). By using the definition

for σ (given in (2.24) above) we find that this term can be rewritten as:

σd ln

(
UL̄−L

UC

)

= C̃ − (˜̄L − L)

= C̃ + (1/ωL)L̃, (2.26)

where C̃ ≡ dC/C, L̃ ≡ dL/L, and ωL ≡ (L̄ − L) /L is the ratio of leisure consumption to labour supply.

By combining (2.25) and (2.26) we find that the loglinearized version of (2.23) is given by:

C̃ + (1/ωL)L̃ = σ [w̃ − t̃M − t̃C] . (2.27)

Linearizing the household’s budget constraint (2.18) is straightforward and results in:

C̃ + t̃C = ωMm̃ + (1 − ωM)
[
w̃ + L̃ − t̃A

]
, (2.28)

where m ≡ M/P is real non-labour income, ωM ≡ m/ (m + (1 − tA)wL) is the initial share of non-

labour income in total income, and t̃A ≡ dtA/(1 − tA). By definition, we have that 0 ≤ ωM ≤ 1.

Furthermore, ωM ≈ 0 for poor households who are heavily reliant on labour income, and ωM ≈ 1 for

rich households, who rely mostly on non-labour income. Note finally that it is the average (and not the

marginal) labour income tax rate which directly influences the budget restriction of the household.

We now have two expressions relating C̃ and L̃ to the variables that are exogenous to the household,

i.e. w̃, m̃, t̃M, t̃A, and t̃C. By combining (2.27) and (2.28) into one matrix equation we find:




1/ωL 1

− (1 − ωM) 1








L̃

C̃



 =




σ [w̃ − t̃M − t̃C]

ωMm̃ + (1 − ωM) [w̃ − t̃A]− t̃C



 . (2.29)

By inverting the matrix on the left-hand side of (2.29) we obtain the solution:




L̃

C̃



 =
ωL

1 + ωL (1 − ωM)




1 −1

1 − ωM 1/ωL





×




σ [w̃ − t̃M − t̃C]

ωMm̃ + (1 − ωM) [w̃ − t̃A]− t̃C



 . (2.30)

Equation (2.30) presents all the comparative static results allowed for by the model. Focusing on the

8Note, however, the slightly different treatment of tax variables. For example, instead of working with dtC/tC we prefer to
express the model in terms of dtC/ (1 + tC) which is well-defined even if the initial tax rate is zero.
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expression for labour supply (the first row of (2.30)), for example, we find:

L̃ = εH
w [w̃ − t̃M − t̃C]− ε I [ωMm̃ + (1 − ωM) [w̃ − t̃A]− t̃C] , (2.31)

where εH
w and −ε I are, respectively, the compensated (Hicksian) wage elasticity and the income elasticity

of labour supply:

εH
w ≡

σωL

1 + ωL (1 − ωM)
> 0, (2.32)

ε I ≡
ωL

1 + ωL (1 − ωM)
> 0. (2.33)

Equation (2.31) is quite useful because it allows us to disentangle the income and substitution effects

associated with changes in the different variables. First, as we illustrated graphically above (in Figure

2.3), a change in the real wage rate has both an income and a substitution effect. Indeed, the uncompen-

sated (Marshallian) wage elasticity is defined as εM
w ≡ εH

w − ε I (1 − ωM), which has an ambiguous sign.

Of course, for rich households ωM ≈ 1, the income effect is negligible, εM
w ≈ εH

w , and labour supply is

likely to be upward sloping (see also Figure 2.4 above). Second, we observe from (2.31) that a change

in the marginal labour income tax rate, ceteris paribus, isolates the pure substitution effect, i.e. an in-

crease in tM produces a decrease in labour supply (L̃ = −εH
w t̃M < 0). Third, and in stark contrast to

the previous result, a change in the average labour income tax rate isolates the income effect, i.e. an

increase in tA produces an increase in labour supply (L̃ = ε I (1 − ωM) t̃A > 0). Intuitively, the reduction

in income makes the household poorer and, since leisure is a normal good, labour supply is increased.

Fourth, leisure is a normal good, which also explains why an increase in non-labour income results in a

decrease in labour supply (L̃ = −ε IωMm̃ < 0). Finally, an increase in the consumption tax has both a

negative substitution effect and a positive income effect, so that the net effect depends on sign of σ − 1,

i.e. L̃ =
(
ε I − εH

w

)
t̃C ⋚ 0).

In Figure 2.5 we illustrate the effect of an increase in the marginal tax rate tM holding constant the

average tax rate tA. For convenience we assume in the construction of the diagram that (i) there is

no non-labour income (m = 0), (ii) the tax on consumption is zero (tC = 0), and (iii) there is a linear

progressive tax schedule:

T

P
= tMwL − z0, (2.34)

where z0 > 0 is the real lump-sum transfer and tM is a constant tax rate. The budget line (2.3) then

simplifies to:

C = z0 + (1 − tM)wL̄ − (1 − tM)w (L̄ − L) . (2.35)
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Figure 2.5: Increasing the marginal tax rate (constant average tax rate)

Equation (2.35) is drawn as the line BC in Figure 2.5. Alternatively, using the definition of the average

tax rate, the budget line can be written as:

C = (1 − tA)wL

= (1 − tA)wL̄ − (1 − tA)w (L̄ − L) , (2.36)

which is the line EF in Figure 2.5. Anywhere along the line EF the average tax rate is constant. Of course,

with a progressive tax system, EF is steeper than BC because tM > tA.

In the tax experiment, tM rises but tA is held constant. The initial equilibrium is at point E0, where

there is a tangency of an indifference curve (which is not drawn) and the line BC. As tM rises, the budget

line BC rotates in a counter-clockwise direction to BD. Since tA is unchanged, the line EF remains in the

same position. In the absence of compensation measures, the new equilibrium would be at point A,

where there is a tangency between an indifference curve (not drawn) and the new budget line BD. But

at point A, the average tax rate would be too high. In order to keep tA unchanged z0 must rise (causing

a parallel shift in BD) so that the new equilibrium is at E1. It follows from the figure that C falls but L̄− L

rises (i.e. labour supply falls).

2.1.4 Non-convex choice set

We have demonstrated in the previous subsection that a progressive tax system can be easily handled

within the context of the basic household decision model. The reason for this convenient result is that

the choice set remains convex so that the household optimum is unique. Many features of actual tax
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systems, however, may make choice sets (for some households) non-convex.9 In the non-convex case,

there may be multiple tangencies, standard comparative static effects (e.g. Slutsky decomposition) are

no longer valid, and econometric testing is much more complicated.

Consider the following example of a means-tested transfer program. We assume that any transfers the

household receives from the government are means-tested, i.e. they depend on the recipient’s income.

For simplicity, we assume the following transfer scheme (in real terms):

z =







z0 + tZw (LMIN − L) for 0 < L ≤ LMIN

z0 for L > LMIN

, (2.37)

where LMIN is the policy-determined critical number of hours (yielding a subsistence level of income)

and tZ (> 0) is the means-testing parameter. If the household works fewer hours than this critical

number (L ≤ LMIN) and thus has a below subsistence level of income, it receives additional transfers

from the government. The more the household works, however, the lower are the transfers it receives.

The means-testing parameter thus operates as an effective tax!

We assume that the tax system is given by T/P = tMwL so that the household budget constraint (in

real terms and setting tC = 0) is given by:

C = m + z + wL − tMwL. (2.38)

Substituting (2.37) into (2.38) we find that the budget constraint features two straight segments:

C =







[m + z0 + tZwLMIN] + (1 − tM − tZ)wL for 0 < L ≤ LMIN

[m + z0] + (1 − tM)wL for L > LMIN

. (2.39)

In terms of Figure 2.6, the budget line features a kink at point A where leisure is equal to L̄ − LMIN. For

low levels of labour supply, the fact that transfers are means-tested implies that the effective tax rate on

labour income is higher than for high levels of labour supply, i.e. BA is flatter than CA. As a result, the

household choice set is non-convex.

In the particular case drawn in Figure 2.6, there are two tangencies between the kinked budget line

and the indifference curve, namely at points E0 and E1. Standard comparative statics methods are in-

valid in this case because infinitesimal changes in tax rates may produce large changes in the endoge-

nous variables in the optimum. Take, for example the effects of an infinitesimal reduction in tZ. In

Figure 2.6 this results in a clockwise rotation of the lower branch of the budget line from AB to AB′. If

the household was initially at E1, it would now clearly prefer E0, i.e. a marginal change has produced

9A set S is convex if the straight line connecting any two points in S also lies in the set S. In Figure 2.6 this is clearly not the
case: E0 and E1 are both in the set, but none of the points on the line connecting E0 and E1 are in the set.
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Figure 2.6: Means-tested transfer system

an inframarginal response.

Matters are even more complex if the tax system features increasing marginal tax rates (here shown

as two different marginal tax rates rather than one single one). Take, for example, the tax schedule:

T

P
=







t1
MwL for 0 < L ≤ L1

t1
MwL1 + t2

Mw (L − L1) for L > L1

,

with t2
M > t1

M and L1 > LMIN). Figure 2.7 shows that the budget line features two kinks in that case, i.e.

one at point A because of the benefit system and the other at point E0 because of the tax progression. As

a result, there may be multiple local optima. In Figure 2.7 we have drawn one tangency optimum (at E1)

and one corner solution (at E0). In order to determine the global optimum we must thus check all the

local optima in order to determine which one features the highest utility level. In order to do this, we

must know the form of the individual’s utility function. In the figure the corner solution turns out to be

better than the interior solution (U0 > U1).

2.2 Labour force participation

Up to now, we have assumed that the choice of hours can be made freely, i.e. L can take on any value

between 0 and 1 (we normalize the time endowment L̄ to unity). This is, of course, rather unrealistic

since labour hours are typically indivisible. There are not too many bosses who will want to employ

you for 6 hours, 24 minutes, and three seconds if that happens to be your optimum labour supply! The
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Figure 2.7: Means-tested transfers and marginal tax rate progression

typical option confronting a household is either to work full time (L = LF) or not to work at all (L = 0).10

The objective of this section is to study individual and aggregate labour supply in such a setting. The

key ingredient of the model is the notion that different people may have different attitudes toward work.

2.2.1 A simple discrete-choice model

Assume that the utility function of household i takes the following Cobb-Douglas form:

Ui(C, 1 − L) ≡ Cα[1 − L]βi , (2.40)

where α > 0 and βi ≥ 0. All households have the same α but there exists a frequency distribution for βi

across the population (see below). The budget constraint of a working household is given by:

C = wLF(1 − tL), (2.41)

where w ≡ W/P is the real wage rate, tL is the labour income tax rate, and we abstract from non-labour

income. In contrast, the budget constraint of a non-working household is:

C = b, (2.42)

where b is the real unemployment transfer received from the government (assumed to be untaxed).

10Obviously, the possibility of part-time work can be easily introduced (L = LP where 0 < LP < LF). The key notion in this
section is that L can only take on a finite number of values.
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There is a rudimentary unemployment benefit system according to which benefits are linked to after-

tax real wage income:

b = γwLF(1 − tL), 0 < γ < 1, (2.43)

where γ is the replacement rate.

In this context, the labour supply decision is really a participation decision of the “yes-no” type;

either the households works LF hours or it does not work any hours. For household i, utility while

working (L = LF and C = wLF(1 − tL)) is given by:

Ui
worker ≡ (wLF(1 − tL))

α (1 − LF)
βi , (2.44)

whereas utility when unemployed (L = 0 and C = b) is:

Ui
unemployed ≡ bα. (2.45)

It follows that the relative utility of labour force participation for this household is:

Ui
worker

Ui
unemployed

=
(wLF(1 − tL))

α (1 − LF)
βi

(γwLF(1 − tL))
α =

(1 − LF)
βi

γα
. (2.46)

The optimal labour supply choice is thus given by:

Li =







0 if γ−α(1 − LF)
βi < 1

LF if γ−α(1 − LF)
βi > 1

. (2.47)

According to this expression, a workaholic household—which does not value leisure at all (βi = 0)—will

certainly work full time (recall that for 0 < γ < 1, it follows that γ−α
> 1). At the other extreme,

households with a high valuation of leisure (βi ≫ 0) will choose not to work at all.

The marginal household is indifferent between working and not working, i.e. it has a βi = βM such

that γ−α(1 − LF)
βM = 1. By taking logarithms on both sides of this expression we can solve for βM:

−α ln γ + βM ln(1 − LF) = 0 ⇔ βM =
α ln γ

ln(1 − LF)
> 0, (2.48)

where the sign follows from the fact that 0 < γ < 1 and 0 < LF < 1 (so that ln γ < 0 and ln(1− LF) < 0).

According to (2.47)-(2.48), all households whose βi exceeds βM prefer not to work (they like leisure “too

much”) whereas households with a βi smaller than βM choose to work.

We assume that the βi’s are distributed uniformly over the interval [0, βmax]. The frequency distribu-

tion is drawn in Figure 2.8. In addition, we assume that the population size is N. Given that all house-
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holds with a βi ≤ βM are workers and all households with a βi > βM are “loungers”, we easily find that

there are βM N/βmax workers (who each work LF hours) and (βmax − βM)N/βmax non-participants. See

Figure 2.8. Aggregate labour supply (LS) is thus given by:

LS =
βM NLF

βmax
, (2.49)

where βM is defined in (2.48) above.11 The macroeconomic labour supply curve is drawn in Figure 2.9.

The key thing to note is that the aggregate labour supply curve is vertical because βM does not depend

on the wage rate or the labour income tax, reflecting that unemployment benefits are linked to after-tax

wage income. Of course, the replacement rate exerts a negative influence on aggregate labour supply in

this model:

∂βM

∂γ
=

α

γ ln(1 − LF)
< 0,

∂LS

∂γ
=

NLF

βmax

∂βM

∂γ
< 0, (2.50)

where the signs follow from the fact that ln(1 − LF) < 0. The reduction in βM causes the aggregate

labour supply curve to shift to the left, as is indicated in Figure 2.9. Some households, whose βi was

close to βM in the initial situation, withdraw from the labour market if the benefit system becomes more

generous.

2.2.2 A different benefit system

In the model developed in the previous subsection, the labour income tax did not affect aggregate labour

supply. It is easy to demonstrate that the results are sensitive to the details of the benefit system. For ex-

ample, instead of (2.43) we now assume that the unemployment benefit is linked to gross wage income:

b = γwLF, (2.51)

where we assume that γ < 1− tL < 1 (otherwise nobody would choose to work!). Reworking the earlier

steps, we find that utility when unemployed is equal to:

Ui
unemployed = bα = (γwLF)

α =

(
γ

1 − tL

)α

(wLF(1 − tL))
α . (2.52)

Then, the utility comparison amounts to:

Ui
worker

Ui
unemployed

=
(wLF(1 − tL))

α (1 − LF)
βi

(
γ

1−tL

)α
(wLF(1 − tL))

α
=

(
1 − tL

γ

)α

(1 − LF)
βi , (2.53)

11Note that LS/N is the labour participation rate implied by this model, i.e. the proportion of the population that participates in
the labour market.
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and the critical value—analogously to (2.48) above—is given by:

α [ln(1 − tL)− ln γ] + βM ln(1 − LF) = 0 ⇔

βM =
α [ln γ − ln(1 − tL)]

ln(1 − LF)
> 0, (2.54)

where the sign follows from the fact that ln(1 − LF) < 0 (as before) and the assumption that γ < 1 − tL.

In this modified model, an increase in the tax rate leads to an increase in γ∗ ≡ γ/(1 − tL) and thus

to an increase in the effective replacement rate, γ∗. This implies that βM falls so that aggregate labour

supply falls.

2.3 Other theoretical approaches

In this section we discuss a number of alternative theoretical approaches regarding consumption and

labour supply decisions. Because the relevant literature is rather large, the survey is both selective and

incomplete. Although we de-emphasize taxation issues, it is safe to conclude that in all these alternative

models the effects of taxes can be quite different from those obtained with the basic model.

2.3.1 Household production

In the basic labour supply model used so far, leisure is assumed to yield direct utility to the household,

i.e. L̄ − L enters as an argument into the utility function (2.1). Though analytically convenient, this

assumption has not remained unchallenged in the literature. As was argued forcefully by Becker (1965),
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many consumption activities require not only goods themselves but also the input of (valuable) time.

For example, if the utility-yielding activity is the consumption of beer, then one must not only purchase

the bottle of beer itself but one must also spend some time drinking it. Similarly, to enjoy the activity

of playing golf one needs not only golf clubs and balls but also a lot of time. Goods and time together

are used to produce the activity which yields utility. But this begs the question what we mean by pure

leisure as a utility-yielding activity. Indeed, as is pointed out by Atkinson and Stern, “Pure ‘leisure’

would require time only and no other inputs, but, apart from sunbathing naked, it is hard to think of an

activity which requires no complementary inputs” (1981, p. 268). In this subsection we show a simple

example of how the time-consuming nature of consumption can be modelled.12

The utility function of the representative household is given by:

U = U (C1, C2) , (2.55)

where C1 and C2 are both consumption activities, and the utility function possesses the usual properties,

i.e. it features positive but diminishing marginal utility for both activities and is strictly quasi-concave

in its arguments. Partial derivatives of the utility function are denoted by Ui ≡ ∂U/∂Ci > 0, Uii =

∂2U/∂C2
i < 0 (for i = 1, 2), and U12 ≡ ∂2U/∂C1∂C2 R 0. The key thing to note is that pure leisure does

not exist and that labour does not enter the utility function directly.

Following Becker (1965) and Kleven (2004), it is assumed that the consumption activities are “pro-

12The model is a simplified version of the one formulated by Atkinson and Stern (1979, 1981). It is also close in spirit to Kleven
(2004).
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duced” by the household using market goods and household time as inputs:

Ci = min

[
Xi

αi
,

Li

βi

]

, (for i = 1, 2), (2.56)

where αi and βi are fixed input coefficients. In the production of activity Ci, the household uses two in-

puts, namely Xi units of the market good i and Li units of labour. The household “production function”

is of the Leontief type, i.e. there is no substitutability between the two inputs Xi and Li. Conditional on

the level of Ci, the household will thus choose its inputs according to:

Xi = αiCi, Li = βiCi, (for i = 1, 2). (2.57)

The household budget constraint is given by:

P1X1 + P2X2 = M − T0 + (1 − tL)WL, (2.58)

where Pi is the market price of good Xi. Just as in the basic model, M is exogenous non-labour income,

T0 is the lump-sum part of the labour income tax, tL is the marginal tax rate on labour (0 < tL < 1), and

L is labour supply. According to (2.58), total spending on market goods (left-hand side) must equal total

after-tax income (right-hand side).

In addition to facing the monetary budget constraint (2.58), the household also faces a time budget

constraint of the form:

L1 + L2 + L = L̄, (2.59)

where L̄ is the exogenous time endowment. The available time is allocated to home production (L1 and

L2) and to labour supply (L). As was pointed out by Becker (1965, p. 496), the constraints (2.58) and

(2.59) are not independent and can be combined into a single constraint.13 Indeed, by using (2.57) in

(2.58)-(2.59) and eliminating market labour supply (L, which we assume to be non-zero), we obtain the

following overall budget constraint:

P∗
1 C1 + P∗

2 C2 = M − T0 + W∗ L̄, (2.60)

where W∗ ≡ (1 − tL)W is the after-tax wage rate, and P∗
i denotes the total price of activity Ci:

P∗
i ≡ αiPi + βiW

∗. (2.61)

The total price of an activity is thus equal to the weighted price of the two inputs needed to produce it,

13As is pointed out by Atkinson and Stern (1981, p. 270), this procedure is only valid if labour does not enter the utility function
directly (as is assumed here).
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with the input coefficients acting as weights.14

The household chooses activities C1 and C2 in order to maximize utility (2.55) subject to the overall

budget constraint (2.60). As is stressed by Atkinson and Stern (1981, p. 269), this maximization program

is formally identical to the standard program studied above. Apart from the fact that total prices (P∗
1

and P∗
2 ) rather than market goods prices (P1 and P2) must be used, standard demand theory applies.

The expenditure function is thus defined as:

E (P∗
1 , P∗

2 , U0) ≡ min
{C1,C2}

P∗
1 C1 + P∗

2 C2 subject to: U (C1, C2) = U0, (2.62)

and it follows from Shephard’s Lemma that the compensated demand for Ci is equal to:

CH
i ≡

∂E
(

P∗
1 , P∗

2 , U0

)

∂P∗
i

, (for i = 1, 2), (2.63)

where (once again) the superscript “H” stands for Hicksian. In view of (2.59) and the second expression

in (2.57), the Hicksian labour supply can be written as:

LH = L̄ − β1CH
1 − β2CH

2 . (2.64)

Consider the effects of an increase in the marginal labour income tax rate, tL, on the supply of labour.

In view of (2.61) the resulting decrease in the after-tax wage leads to a decrease in the total price of all

activities; more so the more labour-intensive the activity is (∂P∗
i /∂tL = −βiW < 0). The effect on

Hicksian labour supply is obtained from (2.64):

∂LH

∂tL
= −β1

[

∂CH
1

∂P∗
1

∂P∗
1

∂tL
+

∂CH
1

∂P∗
2

∂P∗
2

∂tL

]

− β2

[

∂CH
2

∂P∗
1

∂P∗
1

∂tL
+

∂CH
2

∂P∗
2

∂P∗
2

∂tL

]

= β1W

[

β1
∂CH

1

∂P∗
1

+ β2
∂CH

1

∂P∗
2

]

+ β2W

[

β1
∂CH

2

∂P∗
1

+ β2
∂CH

2

∂P∗
2

]

= W
[

β1 β2

]





∂CH
1

∂P∗
1

∂CH
1

∂P∗
2

∂CH
2

∂P∗
1

∂CH
2

∂P∗
2








β1

β2



 . (2.65)

The expression on the right-hand side of (2.65) is a so-called quadratic form of the type x′Sx, where

x′ ≡
[

β1 β2

]

is a row vector and S is a two-by-two matrix.15 We would like to know the sign of

this quadratic form. It turns out that this sign depends on certain properties of the matrix S. The S

matrix contains all the Hicksian substitution terms and is therefore often called the Substitution Matrix.

It follows from (2.63) that it is equal to the Hessian of the expenditure function, i.e. the matrix of its

14The basic consumption-leisure model is a special case of the Becker model developed in this section. Indeed, by setting α1 = 1,
β1 = 0, α2 = 0, and β1 = 1 we arrive at the model discussed in Section 2.1 above.

15See the Matematical Appendix for further details on the concepts and properties introduced here.



32 PUBLIC ECONOMICS: TOOLS AND TOPICS

second-order derivatives:

S ≡





∂CH
1

∂P∗
1

∂CH
2

∂P∗
1

∂CH
1

∂P∗
2

∂CH
2

∂P∗
2



 =






∂2E

∂(P∗
1 )

2
∂E

∂P∗
1 ∂P∗

2

∂E
∂P∗

2 ∂P∗
1

∂2E

∂(P∗
2 )

2




 . (2.66)

Hence, by Young’s theorem it follows that S is a symmetric matrix, i.e. the off-diagonal elements are equal

to each other (Sij = Sji). Furthermore, concavity of the expenditure function, E
(

P∗
1 , P∗

2 , U0

)
, implies that

S is negative semidefinite, i.e. x′Sx ≤ 0 for all x. Provided we allow for some substitutability between C1

and C2 (and thus rule out the Leontief case), Sii < 0 and we reach the stronger result that S is negative

definite, i.e. x′Sx < 0 for all x 6= 0. Using this result in (2.65) we find that ∂LH/∂tL < 0. Just as in the

basic labour supply model, the compensated labour supply function in the home production model is

upward sloping in the after-tax wage (and downward sloping in the tax rate).

It is clear from (2.65) that the tax increase leads to a reduction in (Hicksian) labour supply and thus

an increase in the amount of labour employed at home, i.e. ∂
[
LH

1 + LH
2

]
/∂tL > 0. But what happens

to the components LH
1 and LH

2 or, equivalently, to CH
1 and CH

2 ? As is demonstrated by Atkinson and

Stern (1979), the answer depends critically on the relative labour intensity of the two activities. By

differentiating (2.63) with respect to tL we get:

∂CH
1

∂tL
= S11

∂P∗
1

∂tL
+ S12

∂P∗
2

∂tL

= −W [β1S11 + β2S12] , (2.67)

where Sij is the element in row i and column j of the substitution matrix S. But CH
1

(
P∗

1 , P∗
2 , U0

)
is

homogeneous of degree zero in P∗
1 and P∗

2 so that 0 = S11P∗
1 + S12P∗

2 and (2.67) can be rewritten as:

∂CH
1

∂tL
= −

S11P∗
1

1 − tL

[
β1W∗

P∗
1

−
β2W∗

P∗
2

]

. (2.68)

The term in front of the square brackets is positive (because S11 < 0) so the effect on the Hicksian

demand for activity C1 is determined by the relative labour intensity of the two activities. If C1 is

relatively labour intensive (β1W∗/P∗
1 > β2W∗/P∗

2 ), then the term in square brackets is positive and

∂CH
1 /∂tL > 0. The decrease in the after-tax wage rate induces a shift toward the labour-intensive home

production activity.16

16Using similar steps the effect on the Hicksian demand for C2 is obtained:

∂CH
2

∂tL
=

S22P∗
2

1 − tL

[
β1W∗

P∗
1

−
β2W∗

P∗
2

]

.

Hence, if C1 is labour intensive then ∂CH
2 /∂tL < 0. This result is obvious because we are focusing on the pure substitution effect,

i.e. along a given indifference curve.
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2.3.2 Collective decision making

In the basic labour supply model of Section 2.1, the behaviour of a representative household is modelled.

Implicitly, therefore, the household, rather than the individual, is seen as the basic spending unit in the

economy. Of course, in reality, most households are made up out of more than one person. The method-

ology of neoclassical economics requires economic behaviour to be modelled at the level of individual

agents rather than at the group level (such as a multi-person family). As is stressed by Chiappori (1992,

p. 440), adherence to methodological individualism calls for an explicit description of the behaviour of

all members of a household, i.e. the black box of the household must be opened up. In this subsec-

tion we discuss some of the recent literature on multi-person household behaviour. To keep matters as

simple as possible we restrict attention to the case of two-person households.

2.3.2.1 Household welfare function

Almost half a century ago, Paul Samuelson (1956) suggested two possible justifications for treating the

representative household as the basic unit of analysis. The first justification is that the tastes of a house-

hold’s members are such that they can be aggregated into one household utility function. An advanced

treatment of this case is found in Varian (1992, pp. 153-154), but here we focus on the simple case of

homothetic preferences. Suppose that the family consists of two members whose direct utility functions

can be written as:

Ui = Ui
(

Ci, L̄ − Li
)

, (for i = 1, 2), (2.69)

where Ui, Ci, L̄ and Li denote, respectively, utility, consumption, the time endowment, and labour

supply of person i. Ignoring the tax system, the budget constraint faced by each person can be written

as:

PCi + W
(

L̄ − Li
)

= Yi, (2.70)

where Yi is (exogenous) full income of person i. For homothetic preferences, the indirect utility function

can be written as:

Vi = v (P, W)Yi, (2.71)
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where v (P, W) is the same for all i.17 By using Roy’s Identity the Marshallian demands for consumption

and leisure are obtained:

Ci = −
∂Vi/∂P

∂Vi/∂Yi
= −

∂v (P, W) /∂P

v (P, W)
Yi, (2.72)

L̄ − Li = −
∂Vi/∂W

∂Vi/∂Yi
= −

∂v (P, W) /∂W

v (P, W)
Yi. (2.73)

The key thing to note about these expressions is that the marginal propensities to consume goods and

leisure out of full income are the same for all household members and independent of full income of

each member. But this means that aggregate family demands for goods and leisure can be written as:

C = −
∂v (P, W) /∂P

v (P, W)
Y, (2.74)

L̄′ − L = −
∂v (P, W) /∂W

v (P, W)
Y, (2.75)

where C ≡ C1 + C2, Y ≡ Y1 + Y2, L̄′ ≡ 2L̄, and L ≡ L1 + L2 denote, respectively, household consump-

tion, full income, time endowment, and labour supply. The fact that family consumption and labour

supply only depends on family full income suggests that an aggregate approach is valid. To demon-

strate that this is so, we postulate a representative agent whose indirect utility function is given by:

V ≡ V1 + V2 = v (P, W)Y. (2.76)

It is easy to see that the application of Roy’s Identity to (2.76) yields exactly the same family demands

for consumption and leisure as given in (2.74)-(2.75). Hence, with homothetic preferences the focus on

the representative household is justified.18 The household is just a blown-up version of each household

member.

The second justification suggested by Samuelson (1956) does not require individual preferences to be

of a particular form. Instead, Samuelson assumes the existence of a so-called household welfare function.

In the context of our simple 2-person household, the individual utility functions are as given by (2.69)

17The direct utility function (2.69) can be written as Ui
(
Ci , L̄ − Li

)
= Gi

(
Ū
(
Ci , L̄ − Li

))
, where Ū (·) is homogeneous of degree

one and the same for all household members. The function Gi is strictly increasing but may differ between household members.
The v (P, W) function is then defined as:

v (P, W) ≡ max
{y1 ,y2}

Ū (y1, y2) subject to: 1 = Py1 + Wy2.

18As is argued by Varian (1992, p. 154), aggregation from the individual to the aggregate household level is possible if and only
if the indirect utility function of household members is of the Gorman form and can be written as:

Vi = f i (P, W) + v (P, W)Yi ,

where f i (P, W) is allowed to differ across household members. Note that the indirect utility function for the homothetic case
(2.71) is a simple example of a Gorman form (with f i (P, W) = 0 for all i). See also Gorman (1953).
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(which need not be homothetic), and the household acts as if it maximizes the following function:

HW ≡ Ψ
(

U1, U2
)

, (2.77)

where HW is an indicator for household welfare and Ψ
(
U1, U2

)
is some function featuring positive par-

tial derivatives, i.e. Ψi ≡ ∂Ψ/∂Ui
> 0 and each member’s utility contributes toward household welfare.

The only joint decision that has to be made at the family level deals with the division of full income

among its members (such that Y1 + Y2 = Y). For a given level of full income, each household member

makes its own consumption and labour supply decision in order to maximize its own utility Ui subject

to its own budget constraint (2.70). The key first-order condition characterizing each member’s private

optimum calls for an equalization of the marginal rate of substitution between leisure and consumption

to the real wage rate:

∂Ui/∂
(

L̄ − Li
)

∂Ui/∂Ci
= w. (2.78)

Samuelson’s basic insight can now be stated as follows. Provided household full income is dis-

tributed optimally across its members (in a manner to be explained below), the choices of individual

household members will be such as to maximize a household welfare function involving only aggregate

household quantities. Put differently, the household welfare function can be written directly in terms of

aggregate consumption and labour supply:

HW ≡ Φ
(
C, L̄′ − L

)
, (2.79)

and individual choices are such that (2.79) is maximized subject to the household budget constraint:

PC + W
(

L̄′ − L
)
= Y. (2.80)

A heuristic proof of Samuelson’s important theorem runs as follows. First, by substituting (2.69) into

(2.77) we obtain an expression for household welfare directly in terms of individual quantities:

HW ≡ Ψ
(

U1
(

C1, L̄ − L1
)

, U2
(

C2, L̄ − L2
))

. (2.81)

The household budget constraint (2.80) can similarly be rewritten as:

P
(

C1 + C2
)

+ W
(

L̄ − L1 + L̄ − L2
)

= Y. (2.82)

In the household optimum, Ci and Li are chosen such that (2.81) is maximized subject to (2.81). This
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gives the key first-order conditions:

∂Ψ

∂Ui

∂Ui

∂Ci
= λP, (2.83)

∂Ψ

∂Ui

∂Ui

∂
(

L̄ − Li
) = λW, (2.84)

where λ is the Lagrange multiplier for the household budget constraint (2.82). Obviously, by combining

(2.83)-(2.84) for the same person we obtain (2.78), i.e. from the family point of view individual members

make the correct marginal decision regarding consumption and leisure. Furthermore, by using (2.83)

for the two household members we obtain:

[λP =]
∂Ψ

∂U1

∂U1

∂C1
=

∂Ψ

∂U2

∂U2

∂C2
. (2.85)

Since ∂Ui/∂Ci is the marginal utility of income to person i, and ∂Ψ/∂Ui is the weight in household

welfare of that person, equation (2.85) requires the marginal household utility of income to be the same

for all household members (Samuelson, 1956, p. 11). This is the important family income distribution

condition mentioned above. Lump-sum redistribution of income across household members must be

such that (2.85) holds.

But the satisfaction of conditions (2.78) and (2.85) implies that the maximization of the alternative

household welfare function (2.79) subject to the household budget constraint (2.80) yields exactly the

same solutions as in the previous paragraph. Indeed, we can relate the two approaches by noting that:

∂Φ

∂C
=

∂Φ

∂Ci
=

∂Ψ

∂Ui

∂Ui

∂Ci
= λP, (2.86)

∂Φ

∂ (L̄′ − L)
=

∂Φ

∂
(

L̄ − Li
) =

∂Ψ

∂Ui

∂Ui

∂
(

L̄ − Li
) = λW, (2.87)

where we have used (2.83)-(2.84) to establish the equivalency between the two sets of first-order condi-

tions. If one is willing to assume that the household welfare function (2.79) is strictly quasi-concave in

its arguments, C and L̄′ − L, then the analysis can proceed entirely at the household level (as was done

in Section 2.1 above) and all the usual duality methods can be employed.19

In the discussion so far, aggregate household labour supply is determined as a unique function of full

household income. For example, for the homothetic model aggregate labour supply takes the form as

given in equation (2.75). Similarly, for the household-welfare-function model, an expression for aggre-

gate labour supply results from the maximization of (2.79) subject to (2.80). But what about the labour

supply of different household members? For both models, labour supply of household member i is a

unique function of the full income level of that person (Yi). In the homothetic model, the division of full

income across households members is indeterminate so the theory itself does not determine individual

19See also Gorman (1959), who argues that the indifference curves associated with household welfare (2.79) are likely to be
convex toward the origin.
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labour supplies. In contrast, in the household-welfare-function model the division of household full

income is determined within the model (by the condition stated in (2.85)). Depending on the properties

of the household welfare function (2.81), labour supplies of both household members are determined.

In the empirical literature, the determinateness of individual labour supplies is often imposed ex-

plicitly by writing the household utility function as:

U = U
(

C, L̄ − L1, L̄ − L2
)

, (2.88)

where C is total household consumption, L̄ is each member’s time endowment, and Li is labour supply

by household member i. The household budget equation is then written as:

PC + W
(

L̄ − L1
)

+ W
(

L̄ − L2
)

= Y, (2.89)

where Y is total full income of the household. In this formulation, (a) leisure for the two household

members need not be perfectly substitutable in utility (as it is in the household welfare function (2.79)),

and (b) the household engages in full income sharing. In this model, the household chooses total con-

sumption (C) and the labour supplies (L1 and L2) in order to maximize utility (2.88) subject to the budget

constraint (2.89). Provided leisure of the two members are less-than-perfect substitutes in utility, indi-

vidual labour supplies are determinate and take the form Li = Li (W, P, Y).20

2.3.2.2 Family bargaining

In recent years, a number of authors have applied the tools of cooperative bargaining theory to the

issue of household decision making. In this subsection we present a simplified version of the model

suggested by Manser and Brown (1980) to illustrate some of the key points which emerge in such a

setting. As before, attention is restricted to a two-person (potential) household. We first study each

individual’s behaviour if they remain single. Next, we illustrate what happens if they join resources and

“get married.”

The utility functions of the two persons take the following form:

U1 = U1
(

C1
1 , C1

2 , L̄ − L1, Z2
)

, (2.90)

U2 = U2
(

C2
1 , C2

2 , L̄ − L2, Z1
)

, (2.91)

where Ci
j is the consumption of good j by person i (j = 1, 2 and i = 1, 2) and Zi is an efficiency parameter

which depends on the marital state and is meant to capture the notion of love and companionship.21 If

20See, for example, Ashenfelter and Heckman (1974) for a model of this type. They also allow the wage rates for the two
household members to differ, so that labour supply functions will take the form Li = Li

(
W1, W2, P, Y

)
, where Wi is the wage rate

of member i. Boskin and Sheshinski (1983) use this type of model to study the optimal tax treatment of married couples.
21McElroy and Horney (1981) instead assume that one partner’s consumption and leisure directly enters the other partner’s

utility function.
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the two persons remain single, it is assumed that Z1 = Z2 = 0. In contrast, if they decide to get married,

then Z1 and Z2 take on positive values and, under the assumption that the two partners actually like

each other (so that ∂U1/∂Z2
> 0 and ∂U2/∂Z1

> 0), the utility of each partner rises as a result of the

marriage. There are two types of consumption goods in this model. Good 2 is a traditional good, but

good 1 is a so-called household good (or shared good). This good has the property that in the married

state, one partner’s consumption of the good does not affect the amount available for consumption by

the other partner.22 As an example of a shared good one could think of a (large) house, a king-size bed,

or heating.

If the two persons are not married, they each face a budget constraint of the form:

P1Ci
1 + P2Ci

2 + W
(

L̄ − Li
)

= Yi, (2.92)

where Yi ≡ Mi + WL̄ is exogenous full income of person i (of which Mi is non-labour income), Pj is the

price of good j, and W is the (common) wage rate. As before we abstract from consumption and labour

income taxes. In the single state, person i maximizes utility Ui subject to the own budget constraint (2.92),

and taking as given Z1 = Z2 = 0. The resulting indirect utility function for person i can be written in

general form as:

Vi
S = Vi

(

P1, P2, W, Yi
)

, (2.93)

where the subscript “S” refers to the single state. For given prices, wage rate, and full income, person i

achieves the utility level Vi
S when single.

If the two persons decide to get married, there are three things which change. First, as was mentioned

above, the efficiency parameters Z1 and Z2 take on positive values. Second, the two partners can profit

from the consumption of the household good. Third, it is typically assumed that the two engage in

income sharing once married, i.e. instead of facing the individual budget constraints (2.92), the married

couple faces the following household budget constraint:

P1C1 + P2

(

C1
2 + C2

2

)

+ W
(

L̄ − L1 + L̄ − L2
)

= Y, (2.94)

where Y ≡ Y1 + Y2 is the household’s full income. The key thing to note in the comparison between

(2.92) and (2.94) is the cost saving that is possible for the shared good. In the single state, both partners

must buy such goods but in the married state one purchase will affect both partner’s utility directly (i.e.

when married, C1
1 = C2

1 = C1 in (2.90)-(2.91)).

The gain from being married (instead of single) can now be defined as the difference in utility in the

22The household good is thus like a pure public good studied in Chapter 13 below. Good 1 is a pure private good.
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married and single states for the two (prospective) partners:

Γ1 ≡ U1
(

C1, C1
2 , L̄ − L1, Z2

)

− V1
S ≥ 0, (2.95)

Γ2 ≡ U2
(

C1, C2
2 , L̄ − L2, Z2

)

− V2
S ≥ 0, (2.96)

where Vi
S is defined in (2.93) above. Following Manser and Brown (1980), it is assumed that Γi ≥ 0

(for i = 1, 2) for existing marriages, i.e. all marriages for which this does not hold are dissolved. In

this setting, V1
S and V2

S are often referred to as the threat points of, respectively, person 1 and 2. For

feasible marriages it remains to decide how the household makes its decisions. Here we consider two

approaches, namely the dictatorial model and the Nash-bargaining model.

2.3.2.2.1 Dictatorial model In the dictatorial model, it is assumed that one partner (say person 1) has

the power to fully determine the family allocation of resources. Person 1 thus chooses C1, Ci
2, and Li (for

i = 1, 2) in order to maximize U1 (given in (2.90) above) subject to the household budget constraint (2.94)

and the participation constraint of the subservient partner, equation (2.96). This participation constraint

limits the dictatorial powers of person 1 because the marriage will be dissolved if the subservient partner

is better off in the single state. The Lagrangian for this optimization problem is:

L ≡ U1
(

C1, C1
2 , L̄ − L1, Z2

)

+ µ
[

U2
(

C1, C2
2 , L̄ − L2, Z2

)

− V2
S

]

+ λ
[

Y − P1C1 − P2

(

C1
2 + C2

2

)

− W
(

L̄ − L1 + L̄ − L2
)]

,

where µ and λ are the Lagrange multipliers for, respectively, the participation constraint and the house-

hold budget constraint. Assuming the participation constraint to hold with equality (µ > 0), the first-

order conditions for the dictatorial optimum are given by the two constraints and:

∂L

∂C1
=

∂U1

∂C1
+ µ

∂U2

∂C1
− λP1 = 0, (2.97)

∂L

∂C1
2

=
∂U1

∂C1
2

− λP2 = 0, (2.98)

∂L

∂C2
2

= µ
∂U2

∂C2
2

− λP2 = 0, (2.99)

∂L

∂ (L̄ − L1)
=

∂U1

∂ (L̄ − L1)
− λW = 0, (2.100)

∂L

∂ (L̄ − L1)
= µ

∂U2

∂ (L̄ − L2)
− λW = 0. (2.101)

The two constraints plus the first-order conditions (2.97)-(2.101) jointly determine optimal solutions for

C1, Ci
2, Li (for i = 1, 2), λ, and µ as a function of the exogenous variables, P1, P2, W, Z1, Z2, Y1, and Y2.
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The labour supply functions for the two partners can thus be written in general functional form as:

L̄ − L1 = H1
(

P1, P2, W, Z1, Z2, Y1, Y2
)

, (2.102)

L̄ − L2 = H2
(

P1, P2, W, Z1, Z2, Y1, Y2
)

, (2.103)

where the partial derivatives can be obtained in the usual fashion by applying the implicit function

rule.23 The key thing to note about these labour supply functions is that Y1 and Y2 exert separate effects

on L1 and L2. Despite the fact that the household engages in income pooling (see (2.94) above), pre-

marital income levels of both partners matter because Y2 affects the minimum utility, V2
S , required by

the subservient partner to remain married (see (2.93) above).

2.3.2.2.2 Nash-bargaining model In the bargaining model, it is assumed that the married couple

negotiate over the optimal choices for C1, Ci
2, and Li (for i = 1, 2). The outcome of this bargaining

process is modelled as a so-called generalized Nash bargaining solution (see e.g. Binmore and Dasgupta,

1987). According to this solution concept, the variables are chosen such that the geometrically weighted

average of the gains to the two partners is maximized subject to the constraints. In logarithmic terms

we have:

ln Ω ≡ ζ ln Γ1 + (1 − ζ) ln Γ2, (2.104)

where Γi is the (non-negative) gain that person i derives from being married and ζ represents the relative

bargaining strength of person 1 (0 ≤ ζ ≤ 1). Obviously, the dictatorial model is obtained as a special

case of the Nash bargaining model by setting ζ = 1.

In the (generalized) Nash bargaining model, the married couple choose C1, Ci
2, and Li (for i = 1, 2)

in order to maximize (2.104) subject to the household budget constraint (2.94) and the non-negativity

conditions (2.95)-(2.96). The Lagrangian for this optimization problem is:

L ≡ ζ ln
[

U1
(

C1, C1
2 , L̄ − L1, Z2

)

− V1
S

]

+ (1 − ζ) ln
[

U2
(

C1, C2
2 , L̄ − L2, Z2

)

− V2
S

]

+ λ
[

Y − P1C1 − P2

(

C1
2 + C2

2

)

− W
(

L̄ − L1 + L̄ − L2
)]

.

The first-order conditions for an interior optimum are given by the household budget constraint and:

∂L

∂C1
=

ζ

Γ1

∂U1

∂C1
+

1 − ζ

Γ2

∂U2

∂C1
− λP1 = 0, (2.105)

∂L

∂C1
2

=
ζ

Γ1

∂U1

∂C1
2

− λP2 = 0, (2.106)

∂L

∂C2
2

=
1 − ζ

Γ2

∂U2

∂C2
2

− λP2 = 0, (2.107)

23McElroy and Horney (1981) present the details of such a derivation in a much more general model with Nash bargaining.
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∂L

∂ (L̄ − L1)
=

ζ

Γ1

∂U1

∂ (L̄ − L1)
− λW = 0, (2.108)

∂L

∂ (L̄ − L2)
=

1 − ζ

Γ2

∂U2

∂ (L̄ − L2)
− λW = 0. (2.109)

In combination with the household budget constraint (2.94), the first-order conditions (2.105)-(2.109)

jointly determine the optimal solutions for C1, Ci
2, Li (for i = 1, 2) and λ as a function of the exogenous

variables, P1, P2, W, Z1, Z2, Y1, Y2, and ζ. For the labour supply functions we thus obtain:24

L̄ − L1 = H1
(

P1, P2, W, Z1, Z2, Y1, Y2, ζ
)

, (2.110)

L̄ − L2 = H2
(

P1, P2, W, Z1, Z2, Y1, Y2, ζ
)

. (2.111)

Both the bargaining parameter (ζ) and the pre-marital income levels (Y1 and Y2) exert separate effects

on L1 and L2. The bargaining parameter influences the outcome because it affects the relative weight

that each partner gets in the optimization problem. The income levels matter because they affect the

threat points, V1
S and V2

S .

2.4 Empirical evidence

There is a huge econometric literature attempting to estimate labour supply equations for households or

individuals. While it is clearly impossible to do this literature justice here, in this section we nevertheless

present a brief discussion of the empirical evidence regarding the key elasticities appearing in the static

labour supply model. The interested reader is referred to the excellent literature surveys on, respectively,

male and female labour supply by Pencavel (1986) and Killingsworth and Heckman (1986), and to the

more recent general survey by Blundell and MaCurdy (1999).

Before discussing the elasticity estimates in detail, two general remarks are in order. First, real world

tax and welfare systems are very complex indeed. This means that the non-convex model (discussed in

Subsection 2.1.4 above) is probably relevant for at least some—and probably most—households. Blun-

dell and MaCurdy, for example, suggest that the effective tax rate faced by poor California households in

the monthly income bracket $750-$1500 is 89%; much higher than the rates faced by wealthier Califor-

nians (1999, p. 1566). Second, it is a well-established fact of life in most countries that men and women

exhibit different labour supply behaviour (hours decision) and different participation behaviour (deci-

sion to be in or out of the labour force).

In his survey on the labour supply behaviour of men, Pencavel (1986, p. 69) presents the results

from fourteen key US studies. He reports three summary estimates, namely the uncompensated labour

supply elasticity, εw ≡ w∗

L
∂L

∂w∗ , the compensated (Hicksian) labour supply elasticity, εH
w ≡ w∗

L

(
∂L

∂w∗

)

U=U0

,

24McElroy and Horney (1981) present the comparative static properties of a slightly different Nash bargaining model in which
both partners have equal bargaining power (ζ = 1/2).
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and (what he calls) the marginal propensity to earn out of non-wage income, mpe ≡ w∗ ∂L
∂m0

. Of course,

it follows from the Slutsky equation for labour supply, given in (2.12) above, that εw, εH
w , and mpe are

related according to:

εw = εH
w + mpe. (2.112)

Eleven of the fourteen studies report negative estimates εw, i.e. the majority of studies suggest that

the labour supply function for US males is backward sloping (dominant income effect). Only one study,

by Wales and Woodland (1979), yields a positive estimate for εw of 0.14. The average εw for the thirteen

remaining studies is −0.12. Interestingly, twelve out of the fourteen studies report negative estimates

for mpe, suggesting that leisure is a normal good as in the standard labour supply models (only one

study yields a small positive estimate). Though there appears to be consensus about the sign of mpe, the

magnitude differs greatly between studies. Finally, eight of the fourteen studies report strictly positive

estimates for the pure substitution elasticity εH
w (as the theory implies), but five report negative estimates

(which is inconsistent with the theory). In summary, an “average and reasonable” guess for the param-

eters that emerges from the studies surveyed by Pencavel (1986) seems to be εw = −0.12, εH
w = 0.11,

and mpe = −0.23. The labour supply curve for men is nearly vertical as income and substitution effects

virtually cancel out. More or less the same conclusion emerges from the recent survey of non-linear

budget constraint models by Blundell and MaCurdy (1999, Table 1, pp. 1646-1648).

In their survey on labour supply behaviour of women, Killingsworth and Heckman (1986) discuss

a large number of different studies (and even results for different estimation procedures or subgroups

within studies). The general impression that one gets from these studies is as follows. Estimates for the

uncompensated wage elasticity, εw, are generally positive and quite large, suggesting that labour supply

is upward sloping for women. Relatively few studies yield negative estimates for the pure substitution

elasticity εH
w , and virtually all studies yield negative estimates for mpe, suggesting that leisure is a normal

good for female workers. Again, more or less the same conclusions emerge from the recent survey of

non-linear budget constraint models for married women by Blundell and MaCurdy (1999, Table 2, pp.

1649-1651).

In summary, the available econometric evidence on static labour supply models seems to suggest

that (a) the uncompensated wage elasticity is near-zero for men but positive for (married) women, and

(b) income elasticities are negative (and leisure is a normal good) for both men and (married) women.

2.5 Punchlines

In this chapter we study the static labour supply decision of individuals or households. In the basic

labour supply model, the representative household maximizes a well-behaved utility function by choos-

ing the optimal levels of goods and leisure consumption. On the one hand, supplying an additional unit
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of labour is bad for utility because it reduces the amount of leisure consumption. On the other hand, it

is good for utility because it allows the household to buy more consumption goods. In the optimum the

household equates marginal costs and benefits and sets the marginal rate of substitution between leisure

and consumption equal to the after-tax real wage rate. Both consumption taxes and labour income taxes

affect this wage rate and thus distort the labour supply decision. A tax or wage change causes both

a pure substitution effect and an income effect on labour supply. The former is always non-negative

whilst the latter is negative (positive) if leisure is a normal (inferior) good. In the standard case, with

leisure as a normal good, the income effect is relatively unimportant for wealthy households so for them

the pure substitution effect dominates.

The basic labour supply model is applied to a number of issues. First, by loglinearizing the model

around an initial optimum, a quantitative-analytical analysis of small tax changes is made possible. In

this analysis the crucial parameters are the substitution elasticity between leisure and consumption in

the utility function, the initial share of non-labour income in total household income, and the initial ratio

between leisure consumption and labour supply. Depending on the magnitudes of these parameters,

the effects of changes in the tax system can be computed.

The second application of the basic labour supply model assumes that the labour income tax system

displays rate progressivity, i.e. both the average and marginal labour income tax rates rise with the

tax base (wage income). Since the choice set remains convex, the standard tools of comparative static

continue to be applicable.

Many features of real world tax and social benefit systems render the household’s choice set non-

convex. The example that we discuss in detail shows how in a means-tested benefit program the means-

testing parameter (relating benefits to wage income over and above subsistence) acts as an implicit

tax on labour income for low-income households. With a non-convex choice set, standard calculus

methods (based on infinitesimal changes) are no longer applicable and both the economic theorist’s

task (of deriving comparative static results) and the econometrician’s task (of estimating income and

substitution elasticities) are much more complicated.

Next we present a brief discussion of the labour force participation decision and the tax effects

thereon. If labour supply is indivisible, and can only take on a finite number of discrete values (say

zero, part-time, and full-time), then the attitude towards leisure in a household’s utility function de-

termines which state the household finds most to its liking. Those with a relatively high valuation of

leisure will not work at all (and just rely on the unemployment benefit), whilst those households with

a low valuation of leisure will work either part-time or full-time. Details of the unemployment benefit

system are shown to exert a major influence on both the participation decision by individuals and on

aggregate labour supply.

In the third section of this chapter we briefly discuss a number of alternative theoretical approaches

to the labour supply decision. In the household production model, leisure does not enter utility directly.

Instead, both household time and market commodities are used as inputs to “home-produce” consump-
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tion activities which enter the utility function. Any part of the time endowment not used in this manner

(as an intermediate input) is supplied to the labour market. It is demonstrated that the household pro-

duction model can be analyzed using the very same tools that were used for the basic labour supply

model.

The second alternative theoretical approach to labour supply opens the black box of household de-

cision making. We first discuss the classic household welfare function approach of Samuelson (1956). If

individual preferences are of a particular type then arguing on the basis of the aggregate family entails

no loss of generality at all. On the other hand, if individual preferences are sufficiently different, then

maximization of aggregate household welfare is still valid provided the income distribution within the

household is set appropriately. In the first case, aggregation from the individual to the aggregate is

trivial because preferences are identical (in the relevant sense). In the second case, aggregation is made

possible because the income distribution leads to an equalization of marginal household utility of in-

come for each household member.

In recent years the tools of cooperative bargaining theory have been applied to the issue of house-

hold decision making. Using a simple model, we demonstrate that labour supply by the two partners

depends both on total family income and on the two partners’ pre-marital income levels. Despite the

fact that the household members pool their incomes in marriage, the premarital income levels affect the

fallback positions that are important in the bargaining setting.

The chapter concludes with a brief discussion of the empirical evidence. The available econometric

evidence on static labour supply models seems to suggest that for most developed countries the follow-

ing two features are relevant. First, the uncompensated wage elasticity of labour supply is near-zero for

men but positive for (married) women. Second, the income elasticities of labour supply are negative

(and leisure is a normal good) for both men and (married) women.

Further reading

Basic labour supply model. Atkinson and Stiglitz (1980, lecture 2) cover much of the same topics as we do.

Deaton and Muellbauer (1980) present very thorough discussions of the basic neoclassical labour supply

model (in Chapter 4) and the labour force participation decision (in Chapter 11). Their exposition makes

extensive use of duality methods. See also Hausman (1981b, 1985) on the theory of labour supply with

non-linear budget sets. Stern (1986) presents a very comprehensive study of different functional forms

for labour supply.

Home production. The classic papers on home production are by Becker (1965), Lancaster (1966),

and Muth (1966). Good theoretical expositions are Atkinson and Stern (1979, 1980) and Kleven (2004).

Early empirical studies using the basic notion of home production include Wales and Woodland (1977),

Gronau (1977, 1980), Atkinson and Stern (1979, 1980), and Graham and Green (1984). In the home

production model used in the text, all activities must be produced within the household itself—they
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cannot be bought in the market. An alternative formalization of the home production idea is due to

Gronau (1977). In his model, the household uses its time endowment for three activities, namely leisure

consumption, labour supply, and home production of goods or services (e.g. cooking, child rearing, etc.)

which can also be bought in the market. This approach has been used for tax policy analysis by, inter

alia, Sandmo (1990) and Kleven, Richter, and Sørenson (2000).

Family labour supply (often combined with home production). The classic source on the household

welfare function approach is Samuelson (1956). The key theoretical contributions to the household bar-

gaining model are Manser and Brown (1980) and McElroy and Horney (1981). A critique of the bar-

gaining approach is found in Chiappori (1988a). He develops an alternative approach which is based

on a direct assumption of Pareto efficiency in the household. See Chiappori (1988b, 1992) and Browning

and Chiappori (1998). Apps and Rees (1997) and Chiappori (1997) combine household production and

collective decision making. Nice surveys on household (bargaining) theory are Bourguignon and Chi-

appori (1994), Bergstrom (1996), and Pollak (2005). Taxation issues in a family context are discussed by

inter alia Boskin and Sheshinski (1983), Apps and Rees (1988,1999a,1999b), Piggott and Whalley (1996),

and Kleven and Kreiner (2004).

Empirical evidence. Good general surveys are Pencavel (1986) (for male labour supply) and Killingsworth

and Heckman (1986) (female labour supply). See also Blundell and MaCurdy (1999) for a survey of re-

cent empirical approaches. Atkinson and Stern (1980, 1981) estimate a system of commodity demands

in which labour is used for household production. The impact of the 1986 US Tax Reform Act on female

labour supply are studied by Eissa (1995) and Eissa and Liebman (1996).
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Chapter 3

Taxation and intertemporal choice

The purpose of this chapter is to discuss the following topics:

• How can we model the consumption-savings decision by households and how is it affected by the

various taxes?

• Which tax equivalency results be established between the various taxes in a dynamic context?

• What are the key implications of endogenizing the labour supply decision in the simple two-period

Fisherian model of consumption and saving?

• How can we extend the Fisherian model and incorporate real world phenomena such human

capital investment, borrowing restrictions, and intergenerational altruism and bequests?

• To what extent does the empirical evidence support the intertemporal substitution hypothesis for

consumption, saving, and labour supply?

In this chapter, we focus on simple dynamic representative-agent models. We abstract from risk and

uncertainty (decision making under uncertainty is studied in Chapter 4 below). The models are partial

equilibrium in nature, i.e. factor prices and tax rates are taken parametrically by the agents and are

exogenous to the models. Only linear taxes are considered in the policy experiments (non-linear taxes

were studied in a static framework in Chapter 2).

3.1 A basic intertemporal model

Whereas the previous chapter restricted attention to static models, it is not very difficult to introduce an

intertemporal dimension in the model. In doing so we are able to study the household’s consumption-

saving choice. The models that are constructed and used throughout this chapter build on the pio-

neering approach by Irving Fisher (1930). In his honour we shall therefore refer to these models as the

Fisherian model of consumption, saving, and labour supply.

47
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The basic Fisherian model makes the following simplifying assumptions. First, calender time is split

into two main segments, namely period 1, which we call the present, and period 2, which stands for the

remaining future. Obviously, by construction, there is no period 3 and period 0 refers to the past (which

cannot be undone). Second, we continue to abstract from risk and uncertainty and assume that the

representative household possesses perfect foresight about wages, prices, interest rates, and taxes. Third,

in the most basic version of the Fisherian model we assume that household labour supply is exogenous.

Fourth, there are perfect capital markets (no constraints on borrowing or lending), and there are no

bequests (no intergenerational links).1

The representative household’s lifetime utility is given by:

Λ = U(C1, C2), (3.1)

where Λ is lifetime utility and Ct is consumption in period t. We assume positive but diminishing

marginal utility of consumption in both periods, that is Ut ≡ ∂U/∂Ct > 0 and Utt ≡ ∂2U/∂C2
t < 0 (for

t = 1, 2). For the time being, we place no restriction on the sign of U12 ≡ ∂U1/∂C2 ≡ ∂U2/∂C1 ≡ U21

but we do assume that the indifference curves bulge toward the origin (as in Figure 3.1 below). That is,

U (·) is strictly quasi-concave and U11U22 − U2
12 > 0.

The budget identities (in nominal terms) for the two periods are given by:

A1 = (1 + R0)A0 + W1 L̄ − P1C1, (3.2)

A2 = (1 + R1)A1 + W2 L̄ − P2C2, (3.3)

where At represents financial assets at the end of period t (A0 was accumulated in period 0, i.e. in the

“past”), Rt is the nominal interest rate in period t, Lt = L̄ is labour supply in period t (L̄ is the exogenous

time endowment), Pt is the price of consumption goods in period t, and Wt is the nominal wage rate in

period t. We choose the price of the consumption good, Pt, as the numeraire so that the real budget

identities can be written as:

a1 = (1 + r0)a0 + w1 L̄ − C1, (3.4)

a2 = (1 + r1)a1 + w2 L̄ − C2, (3.5)

where at ≡ At/Pt, wt ≡ Wt/Pt, and rt are, respectively, real financial assets, the real wage rate, and the

real interest rate in period t. The real and nominal interest rates are related according to:

(1 + rt) ≡ (1 + Rt)
Pt

Pt+1
. (3.6)

1Below we also study endogenous labour supply, imperfect capital markets, and intergenerational bequests. Risk and uncer-
tainty are studied in Chapter 4. The multi-period version of the model is discussed briefly in Section 3.4 and more extensively in
Chapter 8.
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Finally, in order to turn the budget identities into budget constraints, we impose a so-called solvency

condition:

a2 = 0. (3.7)

This expression can be understood as follows. First, in the absence of preference satiation and bequests,

the household would certainly not plan to possess positive assets at the end of period 2. Indeed, it would

love to be heavily indebted at the end of period 2, i.e. from the household’s point of view the relevant

constraint is thus that a2 ≤ 0. The capital market (the lenders) will, however, not allow the household

to be indebted at the end of period 2, i.e. the constraint a2 ≥ 0 must also hold. By combining the two

constraints we obtain (3.7).

In the basic model, we abstract from any additional lending- or borrowing constraints, i.e. in period

1 the household can freely borrow or lend at the going interest rate r1, a1 can have either sign, and the

budget identities can be consolidated into a single lifetime-budget constraint.2 In step 1 we set a2 = 0 and

solve (3.4)-(3.5) for a1:

a1 =
C2 − w2 L̄

1 + r1
= (1 + r0)a0 + w1 L̄ − C1. (3.8)

In step 2 we re-write the final equality in (3.8) as follows:

C1 +
C2

1 + r1
= (1 + r0)a0 + h0 ≡ Ω, (3.9)

where Ω is total wealth and h0 is human wealth representing the after-tax value of the time endowment:

h0 ≡ w1 L̄ +
w2 L̄

1 + r1
. (3.10)

Intuitively, the life-time budget constraint (3.9) says that, for the solvent household, the present value

of spending on goods (left-hand side of (3.9)) equals initial total wealth (Ω on the right-hand side). The

prices of C1 and C2 are, respectively, 1 and 1/ (1 + r1). We could thus use duality theory just as for the

static model (discussed in the previous chapter) to derive Hicksian and Marshallian demand expressions

for C1 and C2. Obviously, we expect to find income and substitution effects to play a crucial role.

Here we solve the household optimization problem in the usual (primal) manner. The household

chooses C1 and C2 in order to maximize lifetime utility (3.1) subject to the lifetime budget constraint

(3.9). The Lagrangian expression is given by:

L ≡ U(C1, C2) + µ

[

Ω − C1 −
C2

1 + r1

]

,

2With a binding borrowing constraint (of the type a1 ≥ 0) in the first period, the household is forced to set a1 = 0 and the
model is essentially a static one. See below.



50 PUBLIC ECONOMICS: TOOLS AND TOPICS

where µ is the Lagrange multiplier for the constraint. The first-order necessary conditions are given by

the constraint and the so-called Euler equation:3

U1(C1, C2)

U2(C1, C2)
= 1 + r1. (3.11)

According to (3.11), the marginal rate of substitution between C1 and C2 is equated to the relative price

of C1. Note also that U1 and U2 in general depend on both C1 and C2, because U12 6= 0 is not excluded

a priori.

In order to study the key properties of the household’s optimal consumption-saving plan, we make

use of the implicit function theorem. Expressions (3.9) and (3.11) define implicit functions relating Ct to

Ω and r1. We write these functions as Ct = Ct(Ω, r1) for t = 1, 2 and we wish to determine the various

partial derivatives of these implicit functions. By totally differentiating (3.9) and (3.11) we obtain the

following matrix expression:

∆




dC1

dC2



 =




1

0



 dΩ +





C2
(1+r1)2

U2



 dr1, (3.12)

where ∆ is:

∆ ≡




1 1

1+r1

U11 − (1 + r1)U12 U12 − (1 + r1)U22



 . (3.13)

In deriving (3.12) we have made use of Young’s theorem (which says that U12 = U21). Furthermore,

the second-order conditions for utility maximization ensure that |∆| > 0. Indeed, the bordered Hessian

associated with the constrained maximization problem is given by:

H̄ ≡








0 1 1
1+r1

1 U11 U12

1
1+r1

U12 U22








, (3.14)

and the second-order sufficient conditions for a maximum are that the principal minors of H̄ alternate

3This Euler equation is obtained as follows. The first-order conditions for C1 and C2 are:

∂L

∂C1
= U1 (C1, C2)− µ = 0,

∂L

∂C2
= U2 (C1, C2)−

µ

1 + r1
= 0.

By eliminating µ from these expressions we find (3.11).
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in sign, starting negative:

|H2| ≡

∣
∣
∣
∣
∣
∣

0 1

1 U11

∣
∣
∣
∣
∣
∣

= −1 < 0, |H̄3| ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1
1+r1

1 U11 U12

1
1+r1

U12 U22

∣
∣
∣
∣
∣
∣
∣
∣
∣

= |H̄| > 0. (3.15)

Finally, it is easy to derive from (3.13) that |∆| = (1 + r1) |H̄|. The utility maximization hypothesis thus

yields very useful information that is needed in the comparative statics exercises.

Let us first consider the effects of a marginal increase in wealth. Holding constant r1, we obtain from

equation (3.12):4

∂C1

∂Ω
=

U12 − (1 + r1)U22

|∆|
R 0, (3.16)

∂C2

∂Ω
=

(1 + r1)U12 − U11

|∆|
R 0. (3.17)

The effect of a wealth change on consumption in both periods is ambiguous in general, i.e. we know

that Utt < 0 but U12 R 0. If U12 ≥ 0 then ∂Ct/∂Ω > 0 for t = 1, 2, and present and future consumption

are both normal goods. In contrast, if U12 < 0 then either present consumption or future consumption

may be an inferior good (∂Ct/∂Ω < 0). It can be easily shown, however, that at most one good can be

inferior. Indeed, it follows from (3.9) that:

∂C1

∂Ω
+

1

1 + r1

∂C2

∂Ω
= 1, (3.18)

so that ∂C1/∂Ω and ∂C2/∂Ω cannot both be negative.

Next, we consider the effects of a marginal increase in the real interest rate r1. This has two effects.

First, the relative price of future consumption decreases. Second, the value of human wealth (and thus

total wealth) falls. Indeed, we derive from (3.9)-(3.10) that:

∂Ω

∂r1
=

∂h0

∂r1
= −

w2 L̄

(1 + r1)2
< 0. (3.19)

An increase in the interest rate causes future wage income to be discounted more heavily.

By taking both effects into account we obtain from (3.12):

∂C1

∂r1
=

U12 − (1 + r1)U22

|∆|

a1

1 + r1
−

1

|∆|

U2

1 + r1
R 0, (3.20)

∂C2

∂r1
=

(1 + r1)U12 − U11

|∆|

a1

1 + r1
+

1

|∆|
U2 R 0, (3.21)

4In deriving the comparative static effects it is useful to note that ∆−1 is equal to:

∆−1 ≡
1

|∆|

[
U12 − (1 + r1)U22 − 1

1+r1

(1 + r1)U12 − U11 1

]

.
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where we have used the second period budget identity (1 + r1)a1 = C2 − w2 L̄ to simplify these expres-

sions. Without further restrictions on U12 and a1 the effects are ambiguous. It is nevertheless possible to

deduce a number of properties. First, by differentiating the lifetime budget equation (3.9) with respect

to r1 we find:

∂C1

∂r1
+

1

1 + r1

∂C2

∂r1
=

a1

1 + r1
. (3.22)

For an agent who chooses to save in the first period (a1 > 0), either present or future consumption (or

both) rise if the interest rate rises. Second, if a1 > 0 and U12 ≥ 0 then ∂C1/∂r R 0 and ∂C2/∂r > 0.

Third, for the special case where the agent’s utility maximum happens to coincide with its endowment

point (so that a1 = 0), it follows that ∂C1/∂r < 0 and ∂C2/∂r > 0.

Just as in the previous chapter, it is convenient to focus on the case of homothetic preferences because

this imposes more structure on the general specification of the model. Recall that U(C1, C2) represents

homothetic preferences if it can be written as U(C1, C2) = G (Ū(C1, C2)) , where G(·) is a strictly increas-

ing function and Ū(C1, C2) is homogeneous of degree one in C1 and C2. The Ū(C1, C2) function has the

following properties:

(P1) Ū1C1 + Ū2C2 = Ū;

(P2) Ū1 and Ū2 are homogeneous of degree zero in C1 and C2;

(P3) Ū12 = −(C1/C2)Ū11 = −(C2/C1)Ū22 and thus Ū11 = (C2/C1)
2Ū22;

(P4) the substitution elasticity is σ ≡ −d ln(C1/C2)/d ln(Ū1/Ū2) = Ū1Ū2/(ŪŪ12) ≥ 0.

Note that homotheticity imposes quite a bit of structure on the model. Indeed, since Ūtt < 0 it follows

from (P3) that Ū12 > 0 (and thus U12 > 0). Hence, it follows from (3.16)-(3.17) that ∂C1/∂Ω > 0 and

∂C2/∂Ω > 0, i.e. present and future consumption are both normal goods! Returning to the interest rate

shock, we find that for a homothetic utility function the Euler equation (3.11) reduces to Ū1/Ū2 = 1+ r1.

Since the Ūt functions are homogeneous of degree zero, this Euler equation thus pins down a unique

C1/C2 ratio as a function of 1 + r1.

By loglinearizing the Euler equation and the lifetime budget restriction (3.9), holding constant (1 +

r0)a0, w1 L̄, and w2 L̄, we obtain the following expression:




ω1 1 − ω1

−1 1









dC1
C1

dC2
C2



 =




a1/Ω

σ




dr1

1 + r1
, (3.23)

where ω1 ≡ C1/Ω and 1 − ω1 ≡ C2/[(1 + r1)Ω] are the budget shares of, respectively, present and

future consumption. By inverting the matrix on the left-hand side and interpreting the derivatives in a

partial sense (since all other determinants of consumption are held constant), we obtain the comparative
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Figure 3.1: Income, substitution, and human wealth effects (homothetic case)

static effects:

∂C1

∂r1
=

C1

1 + r1

[

(1 − ω1)−
w2 L̄

(1 + r1)Ω
− (1 − ω1)σ

]

, (3.24)

∂C2

∂r1
=

C2

1 + r1

[

(1 − ω1)−
w2 L̄

(1 + r1)Ω
+ ω1σ

]

, (3.25)

where we have also used (1 + r1)a1 = C2 − w2 L̄. The three terms appearing in square brackets on the

right-hand sides of (3.24)-(3.25) represent, respectively, the income effect, the human wealth effect, and the

substitution effect. We illustrate these effects in Figure 3.1.

The initial lifetime budget restriction (3.9) is given by the solid line AB and the initial equilibrium is

at point E0. The line WEP0 from the origin is the initial wealth expansion path characterizing the optimal

C2/C1 ratio—consistent with the homothetic version of (3.11)—for different levels of total wealth, Ω.

As a result of the increase in r1, the budget line shifts to A′B′ and the wealth expansion path rotates

in a counter-clockwise fashion to WEP1. The ultimate effect of the shock is given by the move from E0

to E1. Graphically, the total effect can be decomposed into constituent partial effects. Here we have

shown the Hicksian decomposition. The move from E0 to E′ is the pure substitution effect (SE) whilst

the move from E′ to E′′ is the income effect (IE). If the household were to have no non-interest income in

the second period (w2 L̄ = 0) then the so-called human wealth effect would be absent (see (3.19) above).

However, since w2 L̄ > 0 by assumption, the increase in the interest rate reduces the value of human

capital and shifts the budget restriction inward. Hence, the human wealth effect (HWE) is represented

by the move from E′′ to E1.
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3.1.1 Some tax equivalency results

Armed with the basic Fisherian model it is possible to introduce various (linear) taxes and to investigate

their effects on the choice set of a representative household. In the process it is possible to demonstrate

some well known tax equivalency results (see also Atkinson and Stiglitz, 1980, pp. 70-72). The first

equivalency result is that between (broadly defined) proportional labour taxes and proportional con-

sumption taxes. A proportional tax (tL) on wage income plus initial assets (e.g. inheritance) augments

the budget constraints as follows:

a1 = (1 − tL) [(1 + r0)a0 + w1 L̄]− C1, (3.26)

0 = (1 + r1)a1 + w2 (1 − tL) L̄ − C2, (3.27)

so that the consolidated budget constraint becomes:

C1 +
C2

1 + r1
= (1 − tL)

[

(1 + r0)a0 + w1 L̄ +
w2 L̄

1 + r1

]

≡ Ω1. (3.28)

In contrast, a proportional tax (tC) on consumption augments the budget constraints as follows:

a1 = (1 + r0)a0 + w1 L̄ − (1 + tC)C1, (3.29)

0 = (1 + r1)a1 + w2 L̄ − (1 + tC)C2, (3.30)

so that the consolidated budget constraint becomes:

(1 + tC)

[

C1 +
C2

1 + r1

]

= (1 + r0)a0 + w1 L̄ +
w2 L̄

1 + r1
≡ Ω2. (3.31)

The comparison between (3.28) and (3.31) reveals that the respective effects of tL and tC on the choice

set of the household is the same if (and only if):

1 − tL =
1

1 + tC
. (3.32)

Provided the condition in (3.32) holds, it follows that total lifetime wealth is the same under the two tax

systems, i.e. Ω1 ≡ (1 − tL)Ω2 = Ω2/ (1 + tC). Since relative prices are also the same, the two systems

are equivalent, i.e. they yield the same solutions for C1 and C2.5 Of course, as follows readily from the

comparison of (3.26) and (3.29), the private saving plans are not identical because the paths of tax bills

differ between the two tax systems.6

5Note that the equivalency result is quite special as it hinges on the time-constancy of the consumption tax, tC! Indeed, if
tC1 6= tC2 then the Euler equation is affected by consumption taxation but not by labour taxation. The consumption tax is like an
interest income tax in that case. We return to this issue below.

6Denoting the optimal choices for a1 under the two tax systems by aL
1 and aC

1 , respectively, we find that if the condition (3.32)

holds, aL
1 − aC

1 = tCaC
1 . It follows that the savings choices are only the same in the trivial case with aL

1 = aC
1 = 0.
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There is also an equivalency result between an interest income tax and a wealth tax. A proportional

tax (tR) on interest income affects the budget constraints as follows:

a1 = [1 + r0 (1 − tR)] a0 + w1 L̄ − C1, (3.33)

0 = [1 + r1 (1 − tR)] a1 + w2 L̄ − C2, (3.34)

so that the consolidated budget constraint becomes:

C1 +
C2

1 + r1 (1 − tR)
= [1 + r0 (1 − tR)] a0 + w1 L̄ +

w2 L̄

1 + r1 (1 − tR)
≡ Ω3. (3.35)

Time-varying proportional wealth taxes (tW1 and tW2) affect the budget constraints as follows:

a1 = (1 + r0 − tW1) a0 + w1 L̄ − C1, (3.36)

0 = (1 + r1 − tW2) a1 + w2 L̄ − C2, (3.37)

so that the consolidated budget constraint becomes:

C1 +
C2

1 + r1 − tW2
= (1 + r0 − tW1) a0 + w1 L̄ +

w2 L̄

1 + r1 − tW2
≡ Ω4. (3.38)

The comparison between (3.35) and (3.38) reveals that the two tax systems are equivalent if the following

two conditions hold:

tW1 = r0tR and tW2 = r1tR. (3.39)

Again several points are worth noting. First, even though tR is constant over time, the wealth tax must

take into account that the interest rate may be time-varying. Second, if the household is a net borrower

in the first period (a1 < 0), then according to (3.34), interest paid on loans are deductible for tax purposes

(as tRr1a1 is negative in that case). The equivalency condition then implies that the wealth tax actually

leads to receipts from the government (as −tW2a1 is positive in that case). Finally, the equivalency results

are only possible if there exists only one asset in the economy, a rather unlikely situation (see Chapter 4

for models with more than one type of financial assets).

3.1.2 Application: The effects of consumption taxes

In this subsection we study the effects on consumption and saving of (potentially time-varying) con-

sumption taxes, tC1 and tC2. Instead of working with the general utility function (3.1), we employ an

often-used specification which assumes intertemporal additive separability in preferences. In particular,
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the life-time utility function is written as:

Λ = U(C1) +
1

1 + ρ
U(C2), (3.40)

where U(·) is the instantaneous utility function (often called felicity function), and ρ > 0 is the constant

pure rate of time preference, representing the effects of “impatience.” The higher is ρ, the heavier future

felicity is discounted, and the more impatient is the household. In addition, it is often assumed in the

literature that the felicity function features a constant intertemporal substitution elasticity, σ:

U (Ct) ≡







C1−1/σ
t −1
1−1/σ for σ 6= 1

ln Ct for σ = 1

. (3.41)

In the absence of other taxes and transfers, the consolidated lifetime budget constraint is:

(1 + tC1)C1 +
(1 + tC2)C2

1 + r1
= (1 + r0)a0 + h0 ≡ Ω, (3.42)

where Ω is again total wealth and h0 is human wealth:

h0 ≡ w1 L̄ +
w2 L̄

1 + r1
. (3.43)

The household chooses C1 and C2 in order to maximize lifetime utility subject to the consolidated

budget constraint. The Lagrangian for this optimization problem is:

L ≡
C1−1/σ

1 − 1

1 − 1/σ
+

1

1 + ρ

C1−1/σ
2 − 1

1 − 1/σ
+ µ

[

Ω − (1 + tC1)C1 −
(1 + tC2)C2

1 + r1

]

,

where µ is the Lagrange multiplier. The first-order conditions consist of the constraint (3.42) and:

C−1/σ
1 = µ (1 + tC1) , (3.44)

1

1 + ρ
C−1/σ

2 =
µ (1 + tC2)

1 + r1
. (3.45)

Since the optimized value of µ represents the marginal utility of wealth, equations (3.44) and (3.46) can

be interpreted as instructing the household to equate the marginal utility of consumption in both periods

(left-hand sides) to the marginal utility of wealth, corrected for the prices of C1 and C2 (of course, the

price of C1 is 1 + tC1 whilst the price of C2 is (1 + tC2) / (1 + r1)).

By dividing (3.44) by (3.45) and rearranging we find the Euler equation:

C2

C1
=

[
1 + tC1

1 + tC2

1 + r1

1 + ρ

]σ

. (3.46)
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Several aspects of this Euler equation are worth noting. First, if the interest rate exceeds the rate of

time preference (r1 > ρ) then, ceteris paribus, the household chooses a high ratio between C2 and C1,

i.e. present consumption is postponed in favour of future consumption and saving in the first period is

high. The effect is more pronounced, the higher is the value of the intertemporal substitution parameter,

σ. Second, if the consumption tax falls over time (tC1 > tC2) then, ceteris paribus, C2/C1 is high. Again,

current consumption is postponed and saving is high (more so the higher is σ). Third, the relative price

of current and future consumption is affected by the consumption tax provided the tax rate is time-

varying (tC1 6= tC2). Conversely, if tC is time-invariant then it drops out of the Euler equation altogether

(see also above).

Quantitative tax policy analysis can be conducted by loglinearizing the model and considering in-

finitesimal tax changes. Following the same steps as in Chapter 2 above, we find that (3.42) and (3.46)

can be loglinearized to obtain the following matrix expression:




ω1 1 − ω1

−1 1








C̃1

C̃2



 =




−ω1

σ



 t̃C1 −




1 − ω1

σ



 t̃C2, (3.47)

where C̃t ≡ dCt/Ct, t̃Ct ≡ dtCt/ (1 + tCt), ω1 ≡ C1 (1 + tC1) /Ω, and 1−ω1 ≡ C2 (1 + tC2) / [(1 + r1)Ω].

There are three different cases which can be studied, namely: (a) a present tax change only (t̃C1 > 0 and

t̃C2 = 0); (b) a future tax change only (t̃C2 > 0 and t̃C1 = 0); and (c) an equal tax change in both peri-

ods (t̃C1 = t̃C2 =) t̃C > 0. Once the effects on consumption in the two periods have been determined,

the effect on net saving, that is a1 − a0, can be deduced from the first-period (or second-period) budget

identity (whichever happens to be most convenient):

S1 ≡ a1 − a0

= r0a0 + w1 L̄ − (1 + tC1)C1 (3.48)

=
(1 + tC2)C2 − w2 L̄

1 + r1
− a0. (3.49)

3.1.2.1 Raising the current consumption tax

In the first case to be studied, only the current consumption tax is increased. The shock can thus be

seen as an unanticipated and temporary increase in the consumption tax. The shock is “unanticipated”

because it occurs immediately in the current period, and it is “temporary” because there is no tax change

in the future.

Setting t̃C2 = 0 we find from equation (3.47) that current consumption and future consumption

change according to:




C̃1

C̃2



 =




1 − (1 − ω1)

1 ω1








−ω1

σ



 t̃C1
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Figure 3.2: Raising the current consumption tax (low σ)

=




− [ω1 + (1 − ω1) σ]

(σ − 1)ω1



 t̃C. (3.50)

Present consumption falls unambiguously (C̃1 < 0); the current tax increase induces the household to

postpone current consumption. The effect on future consumption is ambiguous due to offsetting income

and substitution effects. (In the Cobb-Douglas case (where σ = 1) these two effects exactly match and

future consumption is unchanged.) It follows from (3.49) that the effect on net saving is also ambiguous.

Indeed, saving rises (falls) if and only if future consumption rises (falls).

In Figure 3.2 we illustrate the effects on present and future consumption for the case of a relatively

low substitution elasticity, i.e. for 0 < σ < 1. The tax increase rotates the budget line in a clockwise

fashion from AB to AC. The total effect consists of the move from E0 to E1. The pure substitution effect

is represented by the move from E0 to E′, whilst the income effect is the move from E′ to E1. Note that

for Leontief preferences—with no substitution possible at all (σ = 0)—the new equilibrium would be at

e1, whereas for the Cobb-Douglas case (with σ = 1) it would be at e2 (where a wealth expansion path,

WEP2 (not drawn) would pass through e2). Not surprisingly, the intermediate case with 0 < σ < 1 lies

in between the two corner cases of Leontief and Cobb-Douglas preferences, i.e. point E1 lies in between

points e1 and e2.

3.1.2.2 Raising the future consumption tax

In the second case to be studied, only the future consumption tax is increased. This shock can be seen as

an anticipated and permanent increase in the consumption tax. The shock is “anticipated” because it is

known in the current period to occur in the future, and it is “permanent” because the future tax remains

at the higher level (recall that there is no period 3).
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Figure 3.3: Raising the future consumption tax: the Cobb-Douglas case (σ = 1)

Setting t̃C1 = 0 we find from equation (3.47) that current consumption and future consumption

change according to:




C̃1

C̃2



 = −




1 − (1 − ω1)

1 ω1








1 − ω1

σ



 t̃C2

=




(σ − 1) (1 − ω1)

− [1 − ω1 + ω1σ]



 t̃C2. (3.51)

Now future consumption falls unambiguously (due to a reverse postponement effect), but the effect on

present consumption is ambiguous due to offsetting income and substitution effects. (The two effects

match for a Cobb-Douglas utility function (σ = 1) so that C̃1 = 0 in that case.) It follows from (3.48) that

net saving falls (rises) if present consumption rises (falls).

In Figure 3.3 we illustrate the effects for the Cobb-Douglas case (σ = 1). To avoid cluttering the

diagram, the indifference curves have been omitted. The tax increase rotates the budget line in a counter-

clockwise fashion from BA to BC. The total effect consists of the move from E0 to E1, the substitution

effect is the move from E0 to E′, and the income effect is the move from E′ to E1.7

3.1.2.3 Intertemporally-neutral increase in the consumption tax

In the third case to be studied, both the current and future consumption tax are increased equipro-

portionally so that the slope of the wealth expansion path (representing the Euler equation (3.46)) is

unaffected. This shock can be seen as an unanticipated and permanent increase in the consumption tax.

7The initial indifference curve passes through points E0 and E′. Note also that for the Leontief case (with σ = 0) the new
equilibrium would be at e1. The reader can easily verify that for the intermediate case, with 0 < σ < 1, the equilibrium lies
somewhere between point e1 and point E1.
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Figure 3.4: Intertemporally neutral increase in the consumption tax

By setting t̃C1 = t̃C2 = t̃C > 0 in equation (3.47) we find that current and future consumption change

according to:




C̃1

C̃2



 =




1 − (1 − ω1)

1 ω1








−1

0



 t̃C =




−1

−1



 t̃C1. (3.52)

Not surprisingly, the intertemporal substitution elasticity (σ) does not feature in this expression. The

relative price of present consumption vis-a-vis future consumption is unaffected in this case, so the

C2/C1 ratio is constant regardless of the value of σ. In terms of Figure 3.4, the tax shock shifts the

budget line in a parallel fashion from AB to CD and shifts the equilibrium from E0 to E1. Regardless

of the value of σ, present and future consumption both fall unambiguously (due to the income effect).

There is no effect on net saving as can be deduced from the loglinearized versions of (3.48) and (3.49):

dS1

Ω
= −ω1

[
C̃1 + t̃C1

]
= (1 − ω1)

[
C̃2 + t̃C2

]
. (3.53)

Since C̃t + t̃Ct = C̃t + t̃C = 0 (for t = 1, 2) it follows from (3.53) that dS1 = 0. Figure 3.4 illustrates the

effects for the general case (σ may be anything). (Indifference curves have again been omitted.) The

total effect equals the income effect and is given by the move from E0 to E1. Note that the substitution

effect is absent.

3.2 Endogenous labour supply

Up to this point we have focused attention on the intertemporal trade-offs allowed by the Fisherian

model, i.e. we have ignored the intratemporal substitution possibilities between consumption and
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leisure by assuming that labour supply is exogenous. As was argued in the previous chapter, how-

ever, one of the crucial aspects of many kinds of taxes is that they affect the labour supply decision

by households. In this subsection we extend the Fisherian model by endogenizing the labour supply

decision of the representative household.8

In order to endogenize labour supply, the general lifetime utility function (3.1) is replaced by:

Λ (·) = U(C1, L̄ − L1) +
1

1 + ρ
U(C2, L̄ − L2), (3.54)

where U(·) is the instantaneous utility function, ρ > 0 is the pure rate of time preference, Ct and Lt

are, respectively, consumption and labour supply in period t (for t = 1, 2), and L̄ is the exogenous time

endowment. Leisure consumption in period t is thus given by L̄ − Lt. Note that the utility function

(3.54), like (3.40) above, is quite special in that it is intertemporally additively separable.

Choosing the price of the consumption good, Pt, as the numeraire, adding labour income taxes, and

imposing the solvency condition (3.7), the periodic budget constraints can be written as:

a1 = (1 + r0)a0 + (1 − tL1)w1L1 − C1 (3.55)

0 = (1 + r1)a1 + (1 − tL2)w2L2 − C2, (3.56)

where rt, at, and wt are respectively, the real interest rate, real financial assets, and the real wage in period

t. The (linear) labour income tax rates are tL1 and tL2. Under the assumption that the household can

freely borrow or lend at the going interest rate, the periodic constraints (3.55)-(3.56) can be consolidated

into one lifetime budget constraint:

C1 + w∗
1 (L̄ − L1) +

C2 + w∗
2 (L̄ − L2)

1 + r1
= (1 + r0)a0 + h0 ≡ Ω, (3.57)

where w∗
t ≡ (1 − tLt)wt is the after-tax real wage rate in period t, and h0 is net human wealth representing

the after-tax value of the time endowment:

h0 ≡ w∗
1 L̄ +

w∗
2 L̄

1 + r1
. (3.58)

Equations (3.57) and (3.58) generalize, respectively, (3.9) and (3.10) for the case of endogenous labour

supply and non-zero labour income taxes.

The life-time budget constraint (3.57) says that for the solvent household the present value of spend-

ing on goods and leisure (left-hand side) equals initial total wealth (right-hand side). The prices of C1,

L̄ − L1, C2, and L̄ − L2 are, respectively, 1, w∗
1 , 1

1+r1
, and

w∗
2

1+r1
. Once a particular functional form has been

chosen for the felicity function, U (·), the model can be solved by means of two-stage budgeting (see the

8This approach was pioneered in the late 1960s by Lucas and Rapping (1969). They used it for macroeconomic purposes,
however, and in doing so placed the intertemporal substitution mechanism in labour supply at the core of modern real business
cycle theory.
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Intermezzo).

For our tax policy analysis, we make use of the often-used felicity function:

U (Ft) ≡
F1−1/σ

t − 1

1 − 1/σ
, (3.59)

Ft ≡
[

ε (Ct)
(η−1)/η + (1 − ε) (L̄ − Lt)

(η−1)/η
]η/(η−1)

, (3.60)

where Ft is sub-felicity, which itself depends on consumption, Ct, and leisure, L̄ − Lt. This specification

is a so-called nested utility structure featuring constant elasticity of substitution (CES) functions. In the

top-level function (3.59), σ represents the intertemporal substitution elasticity, and in the bottom-level

function (3.60), η is the intratemporal substitution elasticity between consumption and labour.

The household chooses Ct and Lt (and thus Ft) for t = 1, 2 in order to maximize lifetime utility (3.54)

subject to the lifetime budget constraint (3.57). Using the method of two-stage budgeting we find the

following solutions, conditional on the level of full consumption, Xt:

Ct = ωCtXt, (3.61)

w∗
t (L̄ − Lt) = (1 − ωCt) Xt, (3.62)

where full consumption, Xt, and the consumption share, ωCt, are defined as follows:

Xt ≡ Ct + w∗
t (L̄ − Lt) , (3.63)

ωCt ≡
εη

εη + (1 − ε)η (w∗
t )

1−η
. (3.64)

The dynamic part of the solution consists of:

F2

F1
=

(
PF2

PF1

)−σ (1 + r1

1 + ρ

)σ

, (3.65)

X2

X1
≡

PF2F2

PF1F1
=

(
PF2

PF1

)1−σ (1 + r1

1 + ρ

)σ

, (3.66)

where PFt is the true price index linking Ft and Xt:

PFt ≡







[

εη + (1 − ε)η (w∗
t )

1−η
]1/(1−η)

for η 6= 1

(
1
ε

)ε ( w∗
t

1−ε

)1−ε
for η = 1

. (3.67)

Finally, the closed-form solution for current full consumption is:

X1 = ξ1Ω, (3.68)
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where Ω is defined in (3.57) above and ξ1 represents the marginal propensity to consume out of total

wealth:

ξ1 ≡







[

1 +
(

1
1+ρ

)σ ( PF1(1+r1)
PF2

)σ−1
]−1

for σ 6= 1

1+ρ
2+ρ for σ = 1

. (3.69)

The key thing to note about these expressions is the different types of substitution margins that can

be affected by taxes. For example, the labour income tax affects both static and dynamic trade-offs:

(a) It affects the static allocation of a given amount of full consumption, Xt, over goods consump-

tion, Ct, and the consumption of leisure, (L̄ − Lt)—see equations (3.61)-(3.62) and (3.64). The in-

tratemporal substitution elasticity η matters here; and

(b) It affects the true cost-of-living index, PFt, and thus also the dynamic choices regarding F2/F1 and

X2/X1. Both η and the intertemporal substitution elasticity σ matter here.

Not surprisingly, the effects of labour taxes are quite complex. In general, a tax change will have

income effects, substitution effects, and human wealth effects. In principle, the same linearization tech-

nique can be used as in Subsection 3.1.2 above. This is left as an exercise to the interested reader.

Intermezzo 3.1

Two-stage budgeting. The method of two-stage budgeting is a useful technique both for

theoretical and empirical work. The basic idea is to split up a dynamic optimization problem

into a static part (which is easy to solve) and a dynamic part (which is almost as easy to

solve). In the static part, a given amount of full consumption is allocated optimally over its

components. In the dynamic part, the optimal time path for full consumption itself is chosen.

The two-stage budgeting procedure is valid provided (i) preferences are intertemporally

separable and (ii) the felicity function is homothetic. This Intermezzo shows the details of

the derivations leading to equations (3.61)-(3.69). The utility function is given in (3.59)-(3.60).

We define full consumption as total spending on goods and leisure in a period:

Xt ≡ 1Ct + w∗
t (L̄ − Lt) , (I.1)

and write the budget constraints (3.55)-(3.56) as follows:

a1 = (1 + r0) a0 + w∗
1 L̄ − X1 (I.2)

0 = (1 + r1) a1 + w∗
2 L̄ − X2, (I.3)
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where we recall that w∗
t ≡ (1 − tLt)wt is the after-tax real wage rate in period t. (Note that

we include the real price of consumption, 1, in order to indicate at which places it features in

the derivations.)

Stage 1: Optimal static choice. In the first stage, the household chooses consumption,

Ct, and leisure, L̄ − Lt, in order to maximize sub-felicity, Ft, given the constraint (I.1), and

holding constant full consumption, Xt. The Lagrangian expression for this problem is:

L1 ≡
[

ε (Ct)
(η−1)/η + (1 − ε) (L̄ − Lt)

(η−1)/η
]η/(η−1)

+ µt [Xt − Ct − w∗
t (L̄ − Lt)] ,

where µt is the Lagrange multiplier. The first-order necessary conditions (FONCs) are given

by the constraint as well as:

∂L1

∂Ct
= ε

(
Ft

Ct

)1/η

− µt1 = 0, (I.4)

∂L1

∂ (L̄ − Lt)
= (1 − ε)

(
Ft

L̄ − Lt

)1/η

− µtw
∗
t = 0. (I.5)

We can eliminate µt by combining the two FONCs and obtain:

(1 − ε) / (L̄ − Lt)
1/η

ε/C
1/η
t

=
w∗

t

1
. (I.6)

In the optimal static choice, the marginal rate of substitution (MRS) between leisure and

consumption is equated to the relative price of leisure (i.e. the after-tax real wage rate).

By combining (I.6) and the ‘budget constraint’ (I.1) we find the solutions for consumption

and leisure conditional on full consumption:

1Ct = ωCtXt, (I.7)

w∗
t (L̄ − Lt) = (1 − ωCt) Xt, (I.8)

where ωCt is a complicated function of the parameters and the after-tax wage rate:

ωCt ≡
εη

εη11−η + (1 − ε)η (w∗
t )

1−η
. (I.9)

Several features are worth noting in (I.9). First, for the often-used Cobb-Douglas subfelicity

function (η = 1) the spending shares on consumption and leisure are constant (i.e. ωCt = ε

in that case). Second, in the general CES case, the following elasticity can be derived from
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(I.9):

∂ωCt

∂w∗
t

w∗
t

ωCt
= (η − 1) (1 − ωCt) . (I.10)

Since 0 < ωCt < 1 this expression implies that an increase in w∗
t leads to an increase (de-

crease) in the spending share of consumption if the household finds it easy (difficult) to

substitute consumption for leisure, i.e. if η > 1 (η < 1).

Armed with the expressions (I.7)-(I.8) we can deduce the true price index linking Xt and

Ft. First, we postulate the link by writing:

PFtFt = Xt, (I.11)

where PFt is the (yet unknown) cost of living index. By substituting (I.7)-(I.8) into the subfe-

licity function (3.60) we obtain:

F
(η−1)/η
t ≡ ε (Ct)

(η−1)/η + (1 − ε) (L̄ − Lt)
(η−1)/η

= ε

(
ωCtXt

1

)(η−1)/η

+ (1 − ε)

(
(1 − ωCt) Xt

w∗
t

)(η−1)/η

⇔

Ft

Xt
=

[

ε
(ωCt

1

)(η−1)/η
+ (1 − ε)

(
1 − ωCt

w∗
t

)(η−1)/η
]η/(η−1)

. (I.12)

By using the definition for ωCt (from (I.9) above), the term in square brackets on the right-

hand side of (I.11) can be simplified to:

[·] =
[

εη11−η + (1 − ε)η (w∗
t )

1−η
]1/η

. (I.13)

By using (I.13) in (I.12) and comparing the result with (I.11) we find the expression for PFt:

PFt =
[

εη11−η + (1 − ε)η (w∗
t )

1−η
]1/(1−η)

, (I.14)

where 1 and w∗
t represent the price of, respectively, consumption and leisure. Of course,

expression (I.11) is really an expenditure function, that is we can write E (1, w∗
t , Ft) = PFtFt

and recover the Hicksian demands for consumption and leisure in the usual fashion by ap-

plying Shephard’s Lemma. Similarly, the indirect utility function can be recovered by writing

V (1, w∗
t , Xt) = Xt/PFt from which we can recover the Marshallian demands by using Roy’s

Identity.

Stage 2: Optimal dynamic choice. In the second stage the household chooses full con-

sumption in the two periods (X1 and X2) in order to maximize lifetime utility Λ (·) subject
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to the budget constraints. Formally, for the general CES case, the household maximizes:

Λ (·) ≡
(X1/PF1)

1−1/σ − 1

1 − 1/σ
+

1

1 + ρ

(X2/PF2)
1−1/σ − 1

1 − 1/σ
,

subject to (I.2)-(I.3). The Lagrangian expression for this problem is:

L2 ≡
(X1/PF1)

1−1/σ − 1

1 − 1/σ
+

1

1 + ρ

(X2/PF2)
1−1/σ − 1

1 − 1/σ

+ λ1 [a1 − (1 + r0) a0 − w̄1 L̄ + X1]

+ λ2 [0 − (1 + r1) a1 − w̄2 L̄ + X2] ,

where λ1 and λ2 are the Lagrange multipliers for the budget constraints in the two periods.

The first-order necessary conditions again consist of the two constraints as well as:

∂L2

∂X1
= (PF1)

1/σ−1 1

X1/σ
1

− λ1 = 0, (I.15)

∂L2

∂X2
=

(PF2)
1/σ−1

1 + ρ

1

X1/σ
2

− λ2 = 0, (I.16)

∂L2

∂a1
= λ1 − λ2 (1 + r1) = 0. (I.17)

By substituting (I.15)-(I.16) into (I.17) we can eliminate λ1 and λ2 in order to derive:

(PF1)
1/σ−1 /X1/σ

1

(PF2)
1/σ−1 /[(1 + ρ) X1/σ

2 ]
= 1 + r1. (I.18)

In the optimal dynamic choice, the household equates the MRS between present and future

full consumption to the relative price of present full consumption (i.e. the gross interest rate).

This is the key dynamic condition characterizing the intertemporal optimum. Note that we

obtain the Euler equation for full consumption by rewriting (I.18):

X2

X1
=

(
1 + r1

1 + ρ

)σ (PF2

PF1

)1−σ

. (I.19)

Of course, (I.19) only says something about the relative amount of full consumption in the

two periods. In order to obtain the level solutions for X1 and X2, we note that the consoli-

dated lifetime budget constraint is given by:

X1 +
X2

1 + r1
= (1 + r0) a0 + h0 ≡ Ω, (I.20)
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where Ω and h0 are, respectively, total wealth and full human wealth:

h0 ≡ w∗
1 L̄ +

w∗
2 L̄

1 + r1
. (I.21)

By combining (I.18) (or equivalently (I.19)) with (I.20) we find the full consumption levels

after some straightforward steps:

X1 = ξ1Ω, (I.22)

X2

1 + r1
= (1 − ξ1)Ω, (I.23)

1/ξ1 ≡ 1 +

(
1

1 + ρ

)σ (PF1 (1 + r1)

PF2

)σ−1

. (I.24)

Note that for the logarithmic felicity function (for which σ = 1), ξ1 = (1 + ρ) / (2 + ρ), i.e.

the household dedicates a constant fraction of total wealth to full consumption in the present

period. Neither the interest rate nor the true price index affects this proportion in that case.

We have now completely characterized the optimal solution for the household optimiza-

tion problem. Indeed, equations (I.22)-(I.24) determine X1 and X2, whilst (I.7)-(I.9) determine

Ct and L̄ − Lt for t = 1, 2. We are done!

****

3.3 Extensions to the two-period model

In this section we develop some extensions to the basic two-period household model. In the first sub-

section we study the human capital investment decision and its reaction to a labour income tax and an

interest income tax. In the second subsection we look at imperfections in the capital market and in the

third subsection we allow for endogenous bequests. To keep things simple we restrict attention to the

case of exogenous labour supply in the last two subsections.

3.3.1 Human capital accumulation

In the basic two-period model, the household can transfer resources across time by lending or borrow-

ing in the first period. The savings instrument consists of a single financial asset, a1, carrying a given

interest rate. In this subsection we extend the model by assuming that the household has an additional

instrument by which it can achieve the optimal life-cycle consumption path, namely investment in its

own human capital. Human capital is embodied in the household itself and thus cannot be borrowed—it

must be built up by the household itself by means of time-consuming educational and training efforts.
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Intuitively, human capital incorporates things like the level of the household’s sophistication and tech-

nical skills which are valuable in the market.

We study the human capital investment decision in a simple model which makes use of the insights

of Eaton and Rosen (1980b) and Heckman (1976). The household lifetime utility function is given by:

Λ = U (C1, C2, L̄ − L1 − I1) , (3.70)

where I1 is time spent in the first period on human capital formation. Since L1 is labour supply in the

first period and L̄ is the time endowment, leisure is equal to L̄ − L1 − I1. Educational activities are costly

because, for a given amount of labour supply, they reduce the amount of leisure that can be consumed.

These activities do not yield direct utility themselves, i.e. it is not fun to read difficult textbooks or go to

school in this model. To keep the model as simple as possible, it is assumed that future leisure does not

feature in the utility function. This implies that the household supplies L̄ units of “raw” labour in the

second period (There is no human capital investment in the second period, I2 = 0, because there is no

third period, so L2 = L̄.).

At the beginning of the first period, the household possesses an exogenously given amount of human

capital, H1. This could, for example, include the basic skills that any human possesses. By engaging in

education, the human capital stock in the second period is augmented according to:

H2 = G (I1) H1, (3.71)

where G (·) is the human capital production function representing the training technology (G (·) > 0

for I1 ≥ 0). It is assumed that G (·) features positive but diminishing marginal productivity of training

hours, i.e. G′
> 0 > G′′. To rule out a zero-training corner solution, it is assumed that limI1→0 G′ (I1) =

∞. Human capital is valuable in the market so if the household possesses Ht units of human capital and

works Lt raw hours, then the labour effort in efficiency units is HtLt and gross wage income is wt HtLt

(for t = 1, 2).

Ignoring initial financial assets (a0 = 0), the budget constraints can be written as follows:

a1 = (1 − tL1)w1H1L1 − C1, (3.72)

0 = [1 + r1 (1 − tR)] a1 + (1 − tL2)w2H2 L̄ − C2, (3.73)

where tR is a proportional tax on interest income and tLt is the labour income tax. The lifetime budget

constraint is thus given by:

C1 +
C2

1 + r1 (1 − tR)
= (1 − tL1)w1H1L1 +

(1 − tL2)w2H2 L̄

1 + r1 (1 − tR)
. (3.74)

The household chooses C1, C2, L1, and I1 in order to maximize lifetime utility (3.70) subject to the
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training technology (3.71) and the lifetime budget constraint (3.74). The first-order conditions associated

with an interior solution to this maximization problem are:

U1

U2
= 1 + r1 (1 − tR) , (3.75)

U3

U1
= (1 − tL1)w1H1, (3.76)

U3

U1
=

(1 − tL2)w2G′ (I1) H1

1 + r1 (1 − tR)
, (3.77)

where Ut ≡ ∂U/∂Ct is the marginal utility of consumption in period t (for t = 1, 2) and U3 ≡ ∂U/∂ (L̄ − L1 − I1)

is the marginal utility of current leisure. The first two equations are familiar from the previous discus-

sion. Equation (3.75) is the consumption Euler equation calling for an equalization of the marginal rate

of substitution between present and future consumption to the after-tax interest factor. Similarly, equa-

tion (3.76) is the condition for optimal labour supply in the first period. It equates the marginal rate of

substitution between present consumption and leisure to the after-tax wage rate.

Equation (3.77) determines the optimal amount of human capital investment. It calls for an equaliza-

tion of the marginal rate of substitution between present consumption and leisure (left-hand side) to the

present value of future additional after-tax wage income (right-hand side). By substituting (3.76) into

(3.77) we obtain a simple condition characterizing the optimal investment decision:

G′ (I1) =
1 − tL1

1 − tL2

w1

w2
[1 + r1 (1 − tR)] . (3.78)

Several things are worth noting about this expression. First, the initial stock of human capital, H1, does

not affect the optimal investment decision since it appears on the right-hand side of both (3.76) and

(3.77). Second, optimal investment does not depend on the utility function because working time and

training time are perfect substitutes and labour supply in the second period is exogenous. Third, an

increase in the current labour income tax or the interest income tax, and a decrease in the future labour

income tax, all lead to a reduction in G′ (I1), that is an increase in the optimal training effort. Whilst

the effects of tL1 and tL2 should be obvious, the effect of the interest income tax warrants some further

comment. Intuitively, as Eaton and Rosen (1980, p. 707) point out, an increase in tR reduces the cost of

borrowing (since interest payments are tax deductible) and allows the household to work less (and train

more) in the current period. Fourth, if the labour income tax is time-invariant (tL1 = tL2) then it drops

out of (3.78) altogether. It follows that a general income tax, with tL1 = tL2 = tR, has a positive effect on

optimal human capital investment.

3.3.2 Borrowing constraints

As was pointed out by Sandmo (1985), the two-period model suffers from at least two potentially serious

shortcomings. First, the model is based on the assumption that interest rates for lending and borrowing
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Figure 3.5: Capital market constraints and the choice set

are the same. Second, it is assumed that the household faces no quantity constraints on borrowing. In

reality both assumptions are not likely to hold (for most households).

The consequences of differential lending and borrowing interest rates can easily be studied in the

two-period model. Assume that the borrowing rate in period 1 is rB1, the lending rate is rL1, and let

rB1 > rL1. Then, ignoring initial assets at the beginning of period 1 (a0 = 0), the two budget identities

for household i are given by:

ai
1 = w∗

1 L̄ − Ci
1, (3.79)

Ci
2 =







(1 + rL1) ai
1 + w∗

2 L̄ for ai
1 > 0

(1 + rB1) ai
1 + w∗

2 L̄ for ai
1 ≤ 0

, (3.80)

where w∗
t ≡ wt (1 − tLt) is the after-tax wage rate in period t, assumed to be the same for all households.

According to (3.80), the household receives interest payments rL1ai
1 if it saves in the first period (ai

1 > 0),

but it must pay interest on loans equal to rB1ai
1 if it decides to borrow in the first period. Because

rB1 > rL1, the life-time budget constraint features a kink at the point where ai
1 changes sign. In terms of

Figure 3.5, the kink is at point B and the choice set shrinks from 0AF (if rL1 = rB1) to 0ABE.

If there is, in addition, a constraint on the maximum amount that can be borrowed, say ai
1 ≥ −aMAX

(with aMAX > 0), then the lifetime budget constraint features an additional kink to the right of point B;

say at point C in Figure 3.5. As a result of this credit constraint the choice set shrinks even further, say

from 0ABE to 0ABCD.

As a consequence of the two types of capital market imperfections, it is likely that for many house-

holds the optimum (restricted) choice will be at one of the two kinks. For such households, many
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substitution effects due to changes in tax rates will no longer be relevant. Econometric research aimed

at quantifying the effects of taxes on consumption, saving, and labour supply must take such features

of the capital market into account—see also Section 3.4 below.

To illustrate some of these points, consider the following simple model in which households differ

only in their rate of time preference. The lifetime utility function of household i is logarithmic:

Λi = ln Ci
1 + βi ln Ci

2, (3.81)

where βi is the discount factor due to pure time preference (βi ≥ 0). In this formulation, patient house-

holds feature a relatively high value of βi whilst impatient households have a low βi. Household i

chooses Ci
1, Ci

2, and ai
1 in order to maximize Λi subject to the budget constraints (3.79)-(3.80).

A household which lends in the first period (a net saver) faces the lifetime budget constraint:

Ci
2 = (1 + rL1)

(

w∗
1 L̄ − Ci

1

)

+ w∗
2 L̄, (3.82)

and chooses the consumption profile according to:

Ci
2

Ci
1

= βi (1 + rL1) , (for ai
1 > 0). (3.83)

At point B in Figure 3.5, ai
1 = 0, and the consumption profile is given by:

Ci
2

Ci
1

=
w∗

2

w∗
1

. (3.84)

Since (by assumption) after-tax wages are the same for all households, the kink is at the same location

for all households. Saving households are located somewhere along the line segment AB in Figure 3.5.

It thus follows from the comparison of (3.83) and (3.84) that:

ai
1 > 0 ⇔ βi >

w∗
2

w∗
1

1

1 + rL1
≡ βL. (3.85)

Any household whose βi exceeds the critical lending value βL will end up saving in the first period.

People who borrow in the first period (but are not credit constrained) face the lifetime budget con-

straint:

Ci
2 = (1 + rB1)

(

w∗
1 L̄ − Ci

1

)

+ w∗
2 L̄, (3.86)

and choose the consumption profile:

Ci
2

Ci
1

= βi (1 + rB1) , (for − aMAX < ai
1 < 0). (3.87)
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Such households consume somewhere along the line segment BC in Figure 3.5. The comparison between

(3.87) and (3.84) furthermore reveals that:

−aMAX < ai
1 < 0 ⇔ βi <

w∗
2

w∗
1

1

1 + rB1
≡ βB. (3.88)

Note that both (3.85) and (3.88) describe interior solutions for which ai
1 6= 0. But since the borrowing

rate is higher than the lending rate (rB1 > rL1), it follows that βL is larger than βB, i.e. there are poten-

tially many households who neither lend nor borrow (see also below). Such households have a time

preference parameter, βi, such that:

ai
1 = 0 ⇔ βB ≤ βi ≤ βL. (3.89)

It remains to be determined what happens at the second kink (at point C) in Figure 3.5. At that point

borrowers face a binding credit constraint, ai
1 = −aMAX, and the consumption profile is given by:

Ci
2

Ci
1

=
w∗

2 − (1 + rB1) aMAX/L̄

w∗
1 + aMAX/L̄

≡ βC (1 + rB1) . (3.90)

Hence, any household whose βi falls short of the critical value at which the credit constraint becomes

binding will borrow up to the hilt and consume at point C:

ai
1 = −aMAX ⇔ βi < βC. (3.91)

In Figure 3.6 we visualize the different cases described by the model. It is assumed that the βi pa-

rameters are distributed across the population according to the density function f (βi). The cumulative

density function is defined as:

F (x) ≡
∫ x

0
f (βi) dβi, (3.92)

and has the usual properties F (0) = 0, limx→∞ F (x) = 1, and F′ (x) ≡ f (x). Intuitively, F (x) is the

area under the density function from 0 to x and it represents the fraction of the population for which

0 < βi < x. In Figure 3.6 four different population groups can be distinguished:

1. A fraction F (βC) of the population consists of credit constrained borrowers (ai
1 = −aMAX);

2. A fraction F (βB)− F (βC) of the population consists of borrowers who do not face a credit con-

straint (−aMAX < ai
1 < 0);

3. A fraction F (βL)− F (βB) of the population consists of households who neither borrow nor lend

(ai
1 = 0);

4. A fraction 1 − F (βL) of the population consists of households who are net savers (ai
1 > 0).
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Provided a tax change does not shift them into another group, households in groups 2 and 4 behave

as in the basic Fisherian model. Matters are drastically different, however, for households in groups

1 and 3. Consider the following example. The government taxes interest receipts so that the after-tax

lending rate is rL1 (1 − tR) and βL is given by:

βL ≡
w∗

2

w∗
1

1

1 + rL1 (1 − tR)
. (3.93)

Interest payments are not tax deductible, the borrowing rate continues to be rB, and both βB and βC

are unaffected. Next consider the effect of an increase in the interest income tax rate, tR, on a typical

non-saving household (in group 3). In view of (3.93), βL will increase as a result of the tax increase:

∂βL

∂tL2
≡

rL1βL

1 + rL1 (1 − tR)
> 0. (3.94)

In terms of Figure 3.6, βL shifts to the right and some marginal savers turn into non-savers. Since

nothing happens to βB (see (3.88)), the population fraction of non-saving households is increased. As

non-saving households simply consume their after-tax labour income in each period (Ci
t = w∗

t L̄), it

follows that the interest income tax increase has no effect at all on current and future consumption.

The usual substitution effects associated with a change in the lending rate are simply not relevant for

this group of households. (Of course, since βC is also unaffected by the change in tR, the behaviour of

households in group 1 is also unchanged.)
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3.3.3 Bequests

The third extension to the basic two-period consumption model recognizes the possibility that finitely-

lived households may be linked to (certain members of) future generations. The typical example that

comes to mind is that parents love their offspring, i.e. the child’s welfare (or income) level features in

the parents’ utility function. We say that there exists one-sided or unidirectional altruism that runs from

the parents to the offspring (but not vice versa).9 We show how the basic consumption model can be

extended to allow for intergenerational linkages operating via “altruistic” bequests. With this extended

model it is possible to study the impact of inheritance taxation on consumption and savings decisions

by households. The basic insights that we employ are due to Barro (1974), who used the model to study

the role of public debt in an economy.

In the altruistic consumption model we continue to assume that all households supply a fixed amount

of labour but we distinguish between two types of agents, namely “parents” and “children.” To keep

notation simple, we assume that each agent gets one child. Each agent lives for two periods, namely

youth (superscript “Y”) and old-age (superscript “O”). At the start of his life, the agent may receive

a transfer (or bequest) from his parent. At the end of youth, the agent gets one child to whom it may

in turn leave a bequest. Restricting attention to the case of unidirectional altruism, the lifetime utility

function as of time period t of a young household is given by:

ΛY
t (·) = U

(

CY
t , CO

t+1

)

+
1

1 + δ
ΛY

t+1 (·) , δ > 0, (3.95)

where ΛY
t is lifetime utility of a young household at time t (the “parent”), CY

t is consumption by a young

household in period t, CO
t is consumption by an old household in period t, and U (·) is the non-altruistic

part of the utility function. Incorporated in (3.95) is the notion that a household derives utility not only

from own goods consumption (CY
t and CO

t+1) but also from the utility level of a future young agent (the

“child” whose welfare is denoted by ΛY
t+1 (·)). The parameter δ is assumed to be positive and it regulates

the severity of the altruistic effect in the utility function. If δ is very large, then the weight of ΛY
t+1 (·) in

the parent’s utility function is close to zero, and the altruistic effect is very weak. Conversely, if δ is close

to zero, then the altruistic effect is very strong.10

The budget identities of a young agent at time t are given by:

CY
t + at + bt = (1 + rt−1)bt−1 + wt L̄, (3.96)

9The more complex case in which an agent cares for both his/her children and parents is referred to as one of two-sided or bi-
directional altruism. To keep things simple we concentrate on unidirectional altruism in the text. The reader is referred to Kimball
(1987) for a study of the model with two-sided altruism.

10It must be stressed that δ plays a completely different role than the household’s own rate of time preference, ρ. To illustrate
this point, assume that U(CY

t , CO
t+1) takes an additively separable form as in (3.40):

U(CY
t , CO

t+1) = U(CY
t ) +

1

1 + ρ
U(CO

t+1).

In this formulation, ρ affects the weight attached to own future felicity. In equation (3.95), δ affects the weight attached to the
offspring’s lifetime utility.
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CO
t+1 = (1 + rt)at + wt+1 L̄, (3.97)

where at is financial assets (excluding bequests received) at the end of period t, bt−1 is the gross bequest

this agent received at the beginning of life, bt is the inheritance left to the agent’s child at the end of

period t, rt is the interest rate, wt is the wage rate, and L̄ is exogenous labour supply. Obviously, the

child of this agent (who is young in period t + 1 and old in period t + 2) will face the following budget

identities:

CY
t+1 + at+1 + bt+1 = (1 + rt)bt + wt+1 L̄, (3.98)

CO
t+2 = (1 + rt+1)at+1 + wt+2 L̄, (3.99)

and similar expressions can be deduced for the “grandchild”, the “great-grandchild”, etcetera of the

original agent. The thing to note about (3.96) and (3.98) is that in each case the offspring receives the

interest-inclusive bequest (denoted by (1 + rt−1) bt−1 and (1 + rt)bt, respectively) at the beginning of its

first period of life.

With perfect capital markets, the agent can lend or borrow as he pleases, at can have either sign, and

the consolidated budget constraint of a young agent at time t is given by:

CY
t + bt +

CO
t+1

1 + rt
= (1 + rt−1)bt−1 + ht, (3.100)

where ht is human wealth, i.e. the present value of lifetime wage income:

ht ≡ wt L̄ +
wt+1 L̄

1 + rt
. (3.101)

By forward iteration of (3.95) we find that the effective objective function for the current parent de-

pends on the consumption levels of all present and future generations:

ΛY
t (·) = U

(

CY
t , CO

t+1

)

+
1

1 + δ

[

U
(

CY
t+1, CO

t+2

)

+
1

1 + δ
ΛY

t+2 (·)

]

= U
(

CY
t , CO

t+1

)

+
1

1 + δ
U
(

CY
t+1, CO

t+2

)

+

(
1

1 + δ

)2

U
(

CY
t+2, CO

t+3

)

+ ...

=
∞

∑
τ=0

(
1

1 + δ

)τ

U
(

CY
t+τ , CO

t+τ+1

)

. (3.102)

The key thing to note about (3.102) is that the altruism parameter δ acts as a discounting factor for future

non-altruistic utility functions (i.e. the U (·) functions). Formally, the utility function resembles a utility

function of a single infinite-lived representative agent.

In the absence of constraints on bequests,11 consolidation over the dynastic family can be achieved.

11Either we assume (counterfactually) that bt can have either sign or we postulate that household decisions are such that the
non-negativity constraint on bequests (bt ≥ 0) is never binding.
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Indeed, by iterating (3.100) forward in time we can eliminate bt, bt+1, bt+2, etcetera and obtain the

dynastic budget constraint:

CY
t +

CO
t+1 + CY

t+1

1 + rt
+

CO
t+2 + CY

t+2

(1 + rt) (1 + rt+1)
+ · · · = (1 + rt−1)bt−1 + ht +

ht+1

1 + rt
+ · · · (3.103)

The left-hand side of (3.103) represents the present value of consumption by all members of the house-

hold dynasty whilst the right-hand side is the present value of resources of all members of the household

dynasty.

The dynastic decision problem is a multi-period generalization of our earlier problems. Indeed, the

current dynastic head (the agent who is young at time t) effectively chooses a sequence for CY
t+τ and

CO
t+τ+1 (for τ = 0, 1, · · · , ∞) in order to maximize the dynastic objective function (3.102) subject to the

dynasty budget constraint (3.103). Although the dynastic head will no longer be alive after period t + 1,

he can nevertheless engineer the path of bequests in such a way that the optimal plan will actually be

chosen by his descendants.

In closing this subsection, a number of remarks are in place. First, it can be shown that a (wealth) tax

on bequests acts like an interest income tax in this framework. Second, if negative bequests are not taxed

then the multidimensional choice set of the dynasty is kinked. It is likely that a lot of households will be

at the kink (and leave zero bequests) in that case. Third, if the constraint on negative bequests is relevant

and bt ≥ 0 becomes binding, then the chain connecting generations is broken and estate taxation will

not have a substitution effect at all. The interested reader is invited to verify these results.

3.4 Empirical evidence

We have shown in this chapter that, in a dynamic setting, tax changes typically affect consumption,

saving, and labour supply along two margins, namely the intratemporal (static) margin and the in-

tertemporal (dynamic) margin. In the context of our simple two-period models, both the intratemporal

substitution elasticity (e.g. our η in Section 3.2) and the intertemporal substitution elasticity (our σ) are

thus crucial parameters. It is therefore not surprising that there exists a huge volume of literature at-

tempting to obtain reliable estimates for the various substitution elasticities by means of econometric

methods. In the remainder of this section we present a brief and incomplete survey of the available

evidence. In the first subsection we discuss the evidence regarding the interest elasticity of household

saving. In the second subsection we review the literature on intertemporal substitution effects in labour

supply.
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3.4.1 Interest elasticity of saving

Before turning to the empirical evidence, it is worth noting that there is no theoretical reason for the

interest elasticity of private saving to be positive. This important point can be illustrated with the aid

of the basic two-period model with exogenous labour supply discussed in Section 3.1 above. It is not

difficult to show that the Slutsky equation for consumption in the two periods can be written as:

∂CM
1

∂r1
=

∂CH
1

∂r1
+

a1

1 + r1

∂CM
1

∂Ω
, (3.104)

∂CM
2

∂r1
=

∂CH
2

∂r1
+ a1

[

1 −
∂CM

1

∂Ω

]

, (3.105)

where CM
t and CH

t are, respectively, the Marshallian and Hicksian demands for Ct (t = 1, 2). Clearly,

the pure “own” substitution effect is positive, i.e. ∂CH
2 /∂r1 > 0 and thus (since there are only two

goods) ∂CH
1 /∂r1 < 0. In Figure 3.1, the pure substitution effect is the move from E0 to E′. The second

terms on the right-hand sides of (3.104)-(3.105) represent the wealth effects, i.e. the combination of the

income effect and the human wealth effect (IE and HWE in Figure 3.1). If both goods are normal (so

that 0 < ∂CM
1 /∂Ω < 0), it follows from (3.104)-(3.105) that the wealth effect is positive (negative) for

a household that saves (borrows) in the first period. Not surprisingly, therefore, the uncompensated

effects of a change in the interest rate are ambiguous. In the absence of future labour income and with

homothetic preferences, we find from (3.24)-(3.25) that ∂CM
1 /∂r1 R 0 for σ ⋚ 1 and ∂CM

2 /∂r1 > 0 for all

σ ≥ 0.

The ambiguity of the uncompensated first-period consumption effect carries over into the uncom-

pensated savings effect. Indeed, by using (3.4) and (3.104) we find:

∂aM
1

∂r1

[

= −
∂CM

1

∂r1

]

= −
∂CH

1

∂r1
−

a1

1 + r1

∂CM
1

∂Ω
. (3.106)

The first term on the right-hand side is positive but the second term is ambiguous in general. In the

Cobb-Douglas case without future labour income the savings elasticity is zero. Interestingly, as can be

seen from (3.24), the human wealth effect itself leads to a decrease in ∂CM
1 /∂r1 and thus an increase in

∂aM
1 /∂r1. This point was stressed by Summers (1981a) in the context of a calibrated general equilibrium

model. The human wealth effect can ensure a positive interest elasticity of saving even in the case of

Leontief preferences (if σ = 0).12

The empirical literature on the interest elasticity of private saving was recently surveyed by Elmen-

dorf (1996) and Bernheim (2002). During the sixties and seventies, the empirical literature typically

employed an ad hoc consumption function (or savings function) and attempted to measure the interest

rate effect by including the interest rate as an explanatory variable. Wright (1967), for example, estimates

12See also Bernheim (2002, p. 1181). Evans (1983) and Starrett (1988a) cast doubt on the general validity of the Summers result.
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a consumption function of the following type:

Ct = α0 + α1Y∗
t + α2Ωt + α3rt + ut, (3.107)

where Ct is consumption, Y∗
t is “normal income” (an exponentially weighted average of current and

past actual disposable income), Ωt is net worth, rt is the after-tax interest rate, and ut is the stochastic

error term. He finds a significant negative estimate for α3 which implies a savings elasticity in the

range of 0.19 to 0.24. Blinder (1975) allows for changes in the income distribution and finds much lower

estimates.13

Following the rational expectations revolution of the seventies and eighties, the use of ad hoc non-

structural models (such as (3.107)) has fallen into disrepute. Instead, modern empirical work makes use

of the consumption Euler equation—see Deaton (1992) and Attanasio (1999) for excellent surveys on this

approach. In the context of our simple two-period model of Section 3.1, the Euler equation is given by

(3.46). Making the obvious substitutions for adjacent time periods, this expression can be approximated

by:14

ln Ct+1 − ln Ct ≈ σ

[

rt − ρ −
tCt+1 − tCt

1 + tCt+1

]

. (3.108)

This equation for consumption is called structural because it is derived from a microeconomic maxi-

mization problem. In (3.108), the conditioning variables are the interest rate and the current and future

consumption tax rates. (Of course, in the presence of interest income taxation, the after-tax interest rate

features in the Euler equation.) Following the pioneering contribution by Hall (1978), a large body of

literature has emerged trying to estimate a stochastic version of equation (3.108) by econometric means.

As is pointed out by Bernheim (2002, pp. 1210-1211), when applied to aggregate consumption data, the

Euler equation approach typically yields very low estimates for the intertemporal substitution elasticity,

σ. In contrast, when the method is applied at the level of individual households, the estimates for σ are

typically larger than zero but less than unity. On the basis of an extensive survey of empirical studies,

Elmendorf (1996, p. 19) suggests that a value of σ of about 0.37 may not be too far off the mark.

In a deterministic model, knowledge of σ is sufficient to compute the marginal propensity to con-

sume out of total wealth and thus the interest elasticity of saving.15 Indeed, in the two-period model,

13Other early studies include Wright (1969), Friend and Hasbrouck (1983), Boskin (1978), and Boskin and Lau (1982). The last
two studies find a high elasticity of about 0.4. As is pointed out by Bernheim (2002, p. 1208), however, the typical finding in the
early literature was a near-zero interest elasticity of saving.

14The Euler equation is given by:

Ct+1

Ct
=

(
1 + rt

1 + ρ

1 + tCt

1 + tCt+1

)σ

.

By taking logarithms and noting that ln (1 + rt) ≈ rt, ln (1 + ρ) ≈ ρ, and ln x ≈ x − 1 (around x = 1) we find:

ln Ct+1 − ln Ct = σ ln

(
1 + rt

1 + ρ

)

+ σ ln

(
1 + tCt

1 + tCt+1

)

≈ σ

[

rt − ρ +
tCt − tCt+1

1 + tCt+1

]

.

15As Bernheim (2002, p. 1211) points out, however, in the case with uncertainty one cannot infer the interest elasticity of saving
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current consumption equals C1 = ω1Ω, where Ω is defined in (3.42) and ω1 is defined as:

ω1 ≡

[

1 + tC1 +

(
1 + tC1

1 + ρ

)σ (1 + tC2

1 + r1

)1−σ
]−1

. (3.109)

For given values of r1, ρ, tC1, and tC2, and σ, an implied value for ω1 can be computed. For given

values of initial wealth ((1 + r0) a0) and present and future labour incomes (w1 L̄ and w2 L̄), total wealth

can be computed as well as the strength of the human wealth effect. Using the expression for ∂C1/∂r1

from (3.24) and noting that ∂a1/∂r1 = −∂C1/∂r1 it is possible to compute the interest elasticity of saving.

With an estimate for σ of 0.37, it is clear from (3.24) that the sum of the income effect and the substitution

effect on consumption is positive. Hence, the interest effect on saving is negative on that account. Only if

the human wealth effect is sufficiently strong, will the interest elasticity of saving be positive. Summers

(1981) uses a multiperiod consumption-saving model and shows that the interest elasticity of saving can

be quite large even if σ is low. Indeed, for the case with σ = 1/3, an interest rate of 4% per annum, and a

rate of time preference of 3% per annum, Summers computes an interest elasticity of 2.38 (1981, p. 536).

3.4.2 Intertemporal substitution elasticity in labour supply

The modern empirical literature on intertemporal labour supply behaviour derives its inspiration from

the pioneering contribution by Lucas and Rapping (1969). Before turning to the empirical evidence,

we first sketch a prototypical structural model of life-cycle labour supply behaviour along the lines

of MaCurdy (1981). In doing so we generalize the two-period model (used in Section 3.2 above) and

assume that there exists a representative household with an infinite planning horizon. The lifetime

utility function of this household is given by:

Λt ≡
∞

∑
s=0

(
1

1 + ρ

)s

U (Ct+s, L̄ − Lt+s) , (3.110)

where t is the planning period, ρ is the pure rate of time preferences, U (·) is the felicity function (with

the usual properties that were mentioned below equation (2.1)), and Ct+s and L̄ − Lt+s are, respectively,

consumption and leisure at time t + s. The budget identity at time t + s is given by:

at+s = (1 + rt+s−1) at+s−1 + w∗
t+sLt+s − Ct+s, (3.111)

where at+s are financial assets at the end of period t+ s, rt+s is the rate of interest, w∗
t+s ≡ (1 − tLt+s)wt+s

is the after-tax real wage rate, and Ct+s is consumption. In the planning period the initial stock of

financial assets, at−1, is given (determined in the past).16

The household chooses paths for consumption, labour supply, and financial assets in order to maxi-

from an estimate of σ. We return to this issue in Chapter 4.
16Note that equations (3.110) and (3.111) are the multiperiod counterparts to, respectively, equations (3.54) and (3.55) that appear

in the two-period model.
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mize lifetime utility (3.110) subject to a sequence of budget identities of the form (3.111), taking as given

at−1 and a solvency condition (which needs not concern us here). The Lagrangian associated with this

maximization problem is given by:

Lt ≡
∞

∑
s=0

(
1

1 + ρ

)s

U (Ct+s, L̄ − Lt+s)

+
∞

∑
s=0

λt+s

(
1

1 + ρ

)s

[(1 + rt+s−1) at+s−1 + w∗
t+sLt+s − Ct+s − at+s] ,

where λt+s (1 + ρ)−s is the (scaled) Lagrange multiplier associated with the period t + s constraint

(3.111). Since s runs from 0 to ∞, a whole path of Lagrange multipliers must be postulated. The first-

order conditions for an interior optimum are given by:

∂Lt

∂Ct+s
=

(
1

1 + ρ

)s

[UC (Ct+s, L̄ − Lt+s)− λt+s] = 0, (3.112)

∂Lt

∂Lt+s
= −

(
1

1 + ρ

)s
[
UL̄−L (Ct+s, L̄ − Lt+s)− λt+sw∗

t+s

]
= 0, (3.113)

∂Lt

∂at+s
= −λt+s

(
1

1 + ρ

)s

+ (1 + rt+s) λt+s+1

(
1

1 + ρ

)s+1

= 0. (3.114)

The derivation of first two conditions is straightforward because they involve intratemporal compar-

isons. The condition for assets is, however, a little more complicated because it compares marginal costs

and benefits through time. Additional saving in period t + s is costly because it detracts from consump-

tion, but it yields benefits in the form of higher interest income in the next period which can then be

used for higher consumption. The marginal costs and benefits are represented by, respectively, the first

and second term on the right-hand side of (3.114), and in the optimum they are equalized.

The first-order conditions for the planning period can be written as:

UC (Ct, L̄ − Lt) = λt, (3.115)

UL̄−L (Ct, L̄ − Lt) = λtw
∗
t , (3.116)

λt =
1 + rt

1 + ρ
λt+1 (3.117)

Equations (3.115) and (3.116) implicitly define so-called λ-constant or Frisch demand equations for, respec-

tively, goods consumption and leisure consumption.17 The conditioning variable, λt, appearing in these

demand equations is the marginal utility of initial wealth, i.e. it measures the change in (maximized)

lifetime utility resulting from an infinitesimal change in initial wealth (λt = Λt/∂at−1). The optimal

lifetime decision problem thus consists of two components. First, the savings decision is solved in such

a manner that the marginal utility of wealth evolves optimally according to (3.117). Second, conditional

17Together with Jan Tinbergen, Ragnar Frisch was awarded the first Nobel Prize in Economics in 1969 for his contributions to
econometrics. He introduced the notion of Frisch demands in Frisch (1932). See also Frisch (1959) Heckman (1974, 1976), and
Browning, Deaton, and Irish (1985, p. 507).
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upon the value of λt, the period-t choices regarding consumption and labour supply are made accord-

ing to (3.115)-(3.116). All the dynamic information (including the lifetime budget constraint) is thus

incorporated in the variable λt.
18

In order to illustrate the type of Frisch labour supply function that has been used in the empirical

literature, we follow MaCurdy (1981) by assuming the felicity function to take the following (additively

separable) form:

U (Ct, Lt) ≡ αt
C

1−1/σC
t − 1

1 − 1/σC
− βt

L1+1/σL
t

1 + 1/σL
, (3.118)

where σC > 0 and σL > 0. In this specification, αt and βt are exogenously given taste parameters. These

shift parameters can be used to capture certain life-cycle effects. For example, if βt is postulated to rise

over time, then ceteris paribus the household finds it more and more disagreeable to supply a given

amount of labour as it gets older.

With the felicity function expressed directly in terms of labour supply (rather than leisure), the first-

order conditions (3.115)-(3.116) change to, respectively, UC (Ct) = λt, and −UL (Lt) = λtw
∗
t . The result-

ing Frisch labour supply is thus loglinear:

ln Lt = −σL ln βt + σL ln w∗
t + σL ln λt. (3.119)

Using this labour supply equation for adjacent time periods t and t − 1 we obtain:

∆ ln Lt = −σL∆ ln βt + σL∆ ln w∗
t − σL (rt−1 − ρ) , (3.120)

where ∆xt ≡ xt − xt−1 and we have used (3.117) lagged one period to deduce that ∆ ln λt = ln (1 + ρ)−

ln (1 + rt−1) ≈ (ρ − rt−1). The expression in (3.120) is useful because it identifies the three separate

reasons for a household to change its labour supply over time. First, if tastes change—for example βt

rises over time—then ceteris paribus this will lead to a decrease in labour supply. The taste effect is

represented by the first term on the right-hand side of (3.120). Second, if the after-tax wage rises over

time, then, holding constant ∆ ln βt and rt−1, labour supply will rise. This intertemporal labour supply

effect is represented by the second term on the right-hand side of (3.120). Finally, the change in labour

supply also depends on the gap between the interest rate and the pure rate of time preference because

it affects the steepness of the Euler equation for labour supply.19

If households operate under conditions of uncertainty, the resulting labour supply equation becomes

18A loglinear approximation to the Frisch labour supply equation for the general model can be obtained from (3.115)-(3.116) by
using the generalized implicit function theorem. As is shown by Card (1994, p. 51), such an equation takes the following form:

ln Lt = ηLw ln w∗
t + ηLλ ln λt,

where ηLw > 0. If leisure is a normal good then ηLλ > 0. If felicity is separable in consumption and leisure (UC,L̄−L = 0, as is the
case in (3.118)), then ηLw = ηLλ.

19The Euler equation for labour supply can be deduced by noting that −UL (Lt+1) = λt+1w∗
t+1 and −UL (Lt) = λtw

∗
t . Using
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a little more complicated—see for example Card (1994, pp. 51-53). Here we ignore the formidable

econometric complications involved in estimating a stochastic version of (3.120) and refer the interested

reader to MaCurdy (1985), Pencavel (1986, pp. 44-51, 83-94), and Blundell and MaCurdy (1999, pp.

1591-1607) for details.

One of the main objectives of the empirical literature has been to obtain a reliable estimate of the

intertemporal substitution elasticity in labour supply, that is the elasticity of employment with respect to

the after-tax wage rate (the coefficient for ∆ ln w∗
t in (3.120)). Pencavel (1986, p. 85) presents a useful

overview of the estimates of σL for prime-age males. Most estimates are positive (as theory predicts) but

quite small. In a later critical survey article, Card (1994, p. 63) argues that “...the elasticity of intertem-

poral substitution is surely no higher than 0.5, and probably no higher than 0.2.” In a recent study, Lee

(2001) finds an estimate of about 0.5. He argues that previous studies found much lower estimates as a

result of technical econometric problems (small sample bias and weak instrumental variables).

3.5 Punchlines

In this chapter we study the intertemporal decisions of a representative household. In the basic two-

period Fisherian model, labour supply is exogenous and the household chooses present and future

consumption in order to maximize its lifetime utility. By saving or borrowing the household can transfer

resources intertemporally and achieve an optimal life-cycle pattern of consumption. The interest rate

determines the relative price of future consumption. A change in the interest rate has three effects on

present and future consumption, namely a pure substitution effect (SE), an income effect (IE), and a

human wealth effect (HWE). Whilst the first two effects are well-known from static models, the third

effect is specific to dynamic models. The HWE results from the change in the present value of future

non-interest income. Even if the utility function features a low degree of substitutability between current

and future consumption, the HWE can nevertheless explain a relatively high elasticity of saving with

respect to the interest rate.

The two-period model is applied to a number of issues. First, several tax equivalencies are demon-

strated. Tax systems are deemed to be equivalent if they give rise to the same household choices of

present and future consumption. It is shown that a proportional tax on labour income plus initial assets

is equivalent to a consumption tax. Furthermore, an interest income tax is equivalent to a particular

type of wealth tax.

The second application of the two-period model concerns a quantitative-analytical study of con-

sumption taxation. If the consumption tax is time-invariant then it does not affect the intertemporal

(3.117) we obtain:

Lt+1

Lt
=

(
βt

βt+1

1 + ρ

1 + rt

w∗
t+1

w∗
t

)η

.

Taking logarithms and lagging once yields (3.120).
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trade-off between present and future consumption and it only has an income effect. In contrast, if the

present or future consumption tax is changed, there are both income and pure substitution effects and

the consumption tax has features not unlike an interest income tax. Unlike for an interest income tax,

however, the human wealth effect is absent under the consumption tax because the interest rate itself is

not affected.

In the second section of this chapter we study an extended version of the Fisherian model in which

labour supply is endogenous. Here the household must make both dynamic decisions (now versus the

future) and static decisions (consumption versus leisure). In the extended model, tax changes in general

have both intertemporal and intratemporal effects on present and future consumption and labour supply.

Provided preferences take a particular form, a very useful analytical method can be used to solve the

model. This two-stage budgeting method is explained in a detailed example.

In the third section of this chapter we study three further extensions to the two-period model. The

first extension deals with the human capital accumulation decision. By investing in education and train-

ing in the current period, the household can increase its labour productivity and future wage income.

Even though labour supply in the current period is endogenous and training is time-consuming, a time-

invariant labour income tax does not affect the optimal training decision. An increase in the interest

income tax, however, decreases the cost of borrowing and leads to an increase in the optimal training ef-

fort! The same result holds for a general income tax in which all income is taxed at the same proportional

rate.

In the second extension we consider the implications for optimal consumption and savings choices

of (i) a difference between the interest rate on lending and on borrowing, and (ii) a maximum borrowing

limit (credit constraint). Each of these features gives rise to a kink in the household’s lifetime budget

constraint. If households differ in their degree of patience, it is demonstrated that potentially large

groups of people will be located at one of these kinks. A tax on interest income received does not affect

such households at all.

In the third extension we provide a brief discussion of a dynastic model in which members of dif-

ferent generations are linked via preferences (unidirectional altruism) and bequests (intergenerational

transfers). Under certain (rather strong) conditions, parents leave bequests to their offspring and, in

doing so, act as if they are maximizing an infinite-horizon dynastic utility function. Finitely-lived gen-

erations are linked to distant relatives via the perpetual chain of bequests. In such a dynastic model,

a wealth tax on bequests is equivalent to an interest income tax. Both an asymmetric tax treatment of

bequests and a prohibition on negative bequests may cause the intergenerational chain to snap.

In the final section of this chapter we briefly review the empirical evidence on the intertemporal

substitution hypothesis. The results obtained thus far do not lend very significant support to this hy-

pothesis. For the consumption-saving model a very low intertemporal substitution elasticity is typically

found. This implies that agents are rather unwilling to substitute consumption across time and that the

interest elasticity of saving is small. Furthermore, many studies find that current income is an important
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conditioning variable for current consumption. One interpretation of this result is that a significant pro-

portion of the population faces capital market restrictions. For the intertemporal labour supply model

matters are also not very encouraging. Typically, researchers find a very low estimate for the intertem-

poral substitution elasticity in labour supply (which sometimes even has the wrong sign). Of course,

the jury is still out on the issue. Better data and better estimation methods may unearth more support

for the intertemporal substitution hypothesis in the future. From a theoretical perspective, the life-cycle

approach to consumption and labour supply remains one of the workhorse models of public economics.

Further reading

Basic two-period model. Atkinson and Stiglitz (1980, lecture 3) and Sandmo (1985) cover much of the

same material as we do. On the altruistic model, see Barro (1974) and Bernheim and Bagwell (1988).

Blomquist (1985) studies rate-progressive labour income taxes in a two-period model with endogenous

labour supply. Diamond (1970) studies the incidence of an interest income tax.

Empirical evidence. Early papers on the interest elasticity of household saving include Wright (1967,

1969), Blinder (1975), Friend and Hasbrouck (1983), Boskin (1978), and Boskin and Lau (1982). Except

for the last two studies, the typical result is a low interest elasticity of saving. See Sandmo (1985, pp. 280-

283), Elmendorf (1996), and Bernheim (2002, pp. 1203-1211) for surveys. Deaton (1992) and Attanasio

(1999) are up-to-date surveys on the intertemporal consumption-saving model. Some good references

on intertemporal labour supply are MaCurdy (1981, 1985), Browning, Deaton, and Irish (1985), Pencavel

(1986, pp. 44-51), Card (1994), and Blundell and MaCurdy (1999, pp. 1591-1607). Ham and Reilly (2002)

test three theories of the labour market and consistently reject the intertemporal substitution model.

Calibrated models. There is a huge literature on calibrated simulation models with life-cycle features.

Key references are Summers (1981a) and Auerbach and Kotlikoff (1987). See also Evans (1983) and

Starrett (1988a) for critical remarks on the Summers approach as well as the rejoinder by Summers

(1984).



Chapter 4

Taxation and choices under risk

The purpose of this chapter is to discuss the following topics:

• How can we model household consumption and savings behaviour in the face of uncertainty

about either the yield on its savings (capital risk) or about its future non-interest income (income

risk)?

• What is the role of risk aversion and how is this phenomenon captured by some often-used func-

tional forms for the utility function?

• What is the effect of different taxes on risk taking behaviour by the household both with and

without the loss-offset provision?

• How can we apply the basic stochastic model to study phenomena such as precautionary savings

under income uncertainty, labour supply in the face of a risky wage rate, and income tax evasion

with stochastic monitoring by the tax authority?

• How does the household react to additional riskiness and what is the role of prudence?

4.1 A basic stochastic model of consumption and saving

Up to this point we have assumed that households are endowed with perfect foresight regarding the

future. Indeed, in the basic consumption model studied in the previous chapter, the household was

assumed to know the future price level, real wage rate, and tax rates with perfect certainty. The objec-

tive of this chapter is to relax this assumption of perfect foresight and to study the effects of risk and

uncertainty on household behaviour.

It is relatively straightforward to introduce risk and uncertainty into the two-period consumption-

saving model. In order to keep the model as simple as possible, we make the following assumptions.

First, just as in the previous chapter we consider only two time periods: period 1 is the present and

85
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period 2 is the remaining future (obviously, by construction, there is no period 3). Second, we continue

to assume that households have perfect foresight regarding wages, taxes, and prices. Third, we assume

that household labour supply is exogenous. Together with the second assumption this implies that there

is no income risk, i.e. future non-interest income is non-stochastic (in Section 4.3 we study the topic of

income risk). Fourth, we abstract from intergenerational bequests and assume that initial assets are

zero. Fifth, we abstract from capital market imperfections such as differential lending and borrowing

rates and quantity restrictions. As a result the household faces ‘almost’ no constraints on borrowing or

lending.

The only kind of uncertainty the household faces is so-called capital risk. There are two assets of

which one has an uncertain return. The safe asset (say “money”) carries a certain yield of r (where

r ≥ −1). In addition there is a single risky asset (say “bonds” or “stocks”) which carries an uncertain

yield of x̃, where x is a stochastic variable with a known probability distribution. To keep matters simple

it is assumed that at worst the household can lose its entire risky investment, i.e. Pr {x̃ ≥ −1} = 1,

where Pr{event} denotes the probability of event occurring, and a tilde above a variable denotes that

the variable in question is stochastic.1

The household determines the optimal allocation of its saving over the two assets. Since utility will

in general be stochastic, the household is assumed to maximize its expected utility. The real budget

constraints facing the household can be written as:

b + m∗ + C1 = w1 L̄, (4.1)

C̃2 = (1 + r)m∗ + (1 + x̃) b + w2 L̄, (4.2)

where b is the amount of risky assets bought (b ≥ 0, i.e. the household is a demander of risky assets),

m∗ is the amount of safe assets bought or borrowed, L̄ is exogenous labour supply, wt is the exogenous

real wage rate in period t (t = 1, 2), C1 is non-stochastic consumption in period 1, and C̃2 is stochastic

consumption in period 2. Investing in the risky asset is an temporal uncertain prospect because time must

elapse before uncertainty is resolved and “nature” reveals the realized value of x̃. As a consequence,

consolidation of the budget identities (4.1)-(4.2) is not convenient because it hides the sequence of events.

To simplify the notation it is useful to rewrite the budget identities somewhat by defining m ≡

m∗ + w2 L̄/ (1 + r):

b + m + C1 = h0, (4.3)

C̃2 = (1 + r)m + (1 + x̃) b, (4.4)

where h0 ≡ w1 L̄ + w2 L̄/ (1 + r) is human wealth, i.e. the present value of non-interest income capital-

1We follow convention in this literature by using the superscript tilde to denote stochastic variables. (Elsewhere in the book a
tilde denotes a rate of change.) See, for example, Eeckhoudt, Gollier, and Schlesinger (2005) for an accessible textbook on economic
decision making in a risky environment.
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ized at the risk-free rate, and m represents gross risk-free assets.

The representative household’s lifetime expected utility function is given by:

E(Λ̃) = U(C1) +
1

1 + ρ
E(U(C̃2)), (4.5)

where E (·) is the expectations operator (the expectation based on the known probability density func-

tion of x̃), ρ is the constant rate of pure time preference (ρ > 0), and U (·) is the felicity function. This

function features a positive but diminishing marginal felicity, i.e. U′ (·) > 0 > U′′ (·). (Below we as-

sume a specific functional form for the felicity function.) No expectations operator is needed in front of

the first term on the right-hand side of (4.5) because C1 and hence U (C1) are non-stochastic.

The stochastic assumption regarding x̃ completes the model. The probability density function for

x̃ is denoted by f (x̃) and is defined over the interval x̃ ∈ [−1, ∞). If the realization of x̃ equals the

lower bound (x = −1) the investor “loses his entire investment principal and all” and if the realization

of x̃ equals the upper bound (x → ∞) the investor “strikes it lucky by hitting the jackpot”. Given the

stochastic process for x̃, the expression for expected lifetime utility is given by:

E(Λ̃) = U(C1) +
1

1 + ρ

∫ ∞

−1
f (x̃)U(C̃2)dx̃, (4.6)

where we have used the fact that E(U(C̃2)) ≡
∫ ∞

−1 f (x̃)U(C̃2)dx̃.

By substituting (4.3) and (4.4) into (4.6) we find the following expression for expected lifetime utility:

E(Λ̃) = U
(

h0 − (b + m)
)

≡ +
1

1 + ρ

∫ ∞

−1
f (x̃)U

(

(b + m)
[
(1 + r)ω + (1 + x̃) (1 − ω)

])

dx̃, (4.7)

where ω ≡ m/ (m + b) is the portfolio share of the risk-free asset (and 1 − ω ≡ b/ (b + m) is the share of

the risky asset), and we have used the fact that C̃2 can be written as:

C̃2 = (b + m)
[
(1 + r)ω + (1 + x̃) (1 − ω)

]
. (4.8)

The household’s choice problem involves two types of decisions. The savings decision concerns the opti-

mal choice of b + m whilst the portfolio decision involves the optimal choice of ω. The variables that are

exogenous to the household are the risk-free interest rate (r), human wealth (h0), and the (parameters of

the) stochastic distribution of x̃.

The first-order necessary condition for the optimal savings decision is:

∂E(Λ̃)

∂ (b + m)
= −U′ (C1) +

1

1 + ρ

∫ ∞

−1

[
(1 + r)ω + (1 + x̃) (1 − ω)

]
f (x̃)U′(C̃2)dx̃ = 0. (4.9)
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By rewriting this expression slightly we obtain the consumption Euler equation in a stochastic setting:

U′ (C1) =
1

1 + ρ
E
([
(1 + r)ω + (1 + x̃) (1 − ω)

]
U′(C̃2)

)
. (4.10)

The first-order necessary condition for the optimal portfolio decision is:

∂E(Λ̃)

∂ω
=

b + m

1 + ρ

∫ ∞

−1
(r − x̃) f (x̃)U′(C̃2)dx̃ = 0, (4.11)

where we have used the fact that (b + m) is non-stochastic. By simplifying (4.11) we obtain:

0 = E
(
U′(C̃2) (x̃ − r)

)
. (4.12)

Equation (4.12) implicitly determines the optimum portfolio, i.e. the optimal division of saving over the

safe and the risky asset. Intuitively it says that the expected marginal utility per Euro invested should

be equated for the two assets.

4.1.1 A special case: Iso-elastic felicity

In principle one can deduce comparative static effects directly from equations (4.10) and (4.12). In order

to simplify the discussion, however, we postulate a specific (iso-elastic) functional form for the felicity

function:

U(Ct) =







(1/γR)
[
C

γR
t − 1

]
if γR 6= 0

ln Ct if γR = 0,

, (4.13)

where γR (< 1) characterizes the degree of risk aversion exhibited by the agent (see below). We shall call

1 − γR the coefficient of relative risk aversion.2

Armed with the functional form (4.13), the optimal portfolio condition (4.12) can be simplified. We

obtain after some steps:

0 = E
(
U′(C̃2) (x̃ − r)

)

= E
(

C̃
γR−1
2 (x̃ − r)

)

= E
(

(b + m)γR−1 [(1 + r)ω + (1 + x̃) (1 − ω)]γR−1 (x̃ − r)
)

= E
(

[(1 + r)ω + (1 + x̃) (1 − ω)]γR−1 (x̃ − r)
)

, (4.14)

where we have used the expression for C̃2 from (4.8) in going from the second to the third line, and have

2Note the close correspondence with the iso-elastic felicity function that was used in the deterministic context in the previous
chapter (see Section 3.1.2). The relationship between the intertemporal substitution elasticity, σ, and the risk-aversion parameter,
γR, is σ = 1/ (1 − γR).
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noted that m and b are non-stochastic in going from the third to the fourth line. Equation (4.14) implicitly

determines the optimal portfolio share, ω∗, as a function of r, γR, and the parameters characterizing the

probability distribution of x̃. As was pointed out by Samuelson (1969), this optimal portfolio share

maximizes the so-called subjective mean return on the portfolio, x∗, which is implicitly defined as:3

(1 + x∗)γR ≡ max
ω

E ((1 + r)ω + (1 + x̃)(1 − ω))γR

= E ((1 + r)ω∗ + (1 + x̃)(1 − ω∗))γR . (4.15)

The stochastic consumption Euler equation can also be simplified with the aid of (4.13). Indeed, by

using (4.13) in (4.10) and simplifying we obtain:

C
γR−1
1 =

1

1 + ρ
E
(

C̃
γR−1
2 [(1 + r)ω + (1 + x̃)(1 − ω)]

)

=
1

1 + ρ
(b + m)γR−1E ((1 + r)ω + (1 + x̃)(1 − ω))γR , (4.16)

where we have used (4.8) to get from the first to the second line. By using (4.3) and (4.15) we can further

simplify (4.16) to obtain a simple expression for consumption in the current period:

C1 = ξ1h0, (4.17)

where ξ1 is the marginal propensity to consume out of total wealth:

ξ1 ≡
(1 + x∗)γR/(γR−1)

(1 + ρ)1/(γR−1) + (1 + x∗)γR/(γR−1)
. (4.18)

Interestingly, the optimal consumption plan for the current period looks very much like the solution

that would be obtained under certainty. Indeed, in the absence of uncertainty about the bond yield,

maximization of lifetime utility would give rise to the same expression for ξ1 but with the subjective

mean return, x∗, replaced by max[x̄, r], where x̄ is the certain return on the (not so) “risky” asset. Note

furthermore that in the case of logarithmic felicity (γR = 0), x∗ drops out of (4.18) altogether, ξ1 =

(1 + ρ) / (2 + ρ) and the existence of capital risk does not affect the level of present consumption at

all. Finally, we have now established that with iso-elastic felicity functions, there exists a so-called

separability property between the savings problem (choosing when to consume) and the portfolio problem

(choosing what to use as a savings instrument).4

3The proof of Samuelson’s claim runs as follows. The first-order condition associated with the maximization problem indicated
in (4.15) is given by:

dE ((1 + r)ω + (1 + x̃)(1 − ω))γR

dω
= E

(

((1 + r)ω + (1 + x̃)(1 − ω))γR−1 (r − x̃)
)

= 0,

which coincides with (4.14).
4Samuelson derives this result in a multi-period consumption saving model (1969a, p. 244). Hagen (1971) studies such a

multi-period model in the presence of proportional income taxes.
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4.1.2 Taxation and risk taking

How do taxes affect risk taking by the household? An often expressed view is that taxation of asset

income discriminates against risk taking because it lowers the expected rate of return on risky assets.

An alternative view was expressed six decades ago by Domar and Musgrave (1944) who argued that

taxation may increase risk taking. On the one hand, the government takes a share of the expected return

but on the other hand with perfect loss offsets the government also shares in the risk of losses. As a result

it may well be the case that asset income taxation increases risk taking by the household.

In order to study the effect of taxation on risk taking we now extend the model by introducing

various types of tax systems. These systems differ only in their definition of the tax base. In the so-

called net taxation case the tax is levied on the excess return on the risky asset only, whereas in the gross

taxation case both assets are taxed at the same rate. We study the general version of the model, i.e. the

felicity function is not restricted to be iso-elastic.

4.1.2.1 Net taxation case

In the net taxation case we assume that there is a tax, tA, on the excess return on the risky asset, x̃ − r.

This tax rate is non-stochastic and the tax base is equal to b (x̃ − r). The current budget constraint is still

given by (4.3) but (4.4) is modified to:

C̃2 = (1 + r)m + (1 + x̃) b − tAb (x̃ − r) , (4.19)

where m is gross risk-free assets (defined directly above equation (4.3)). Using the same steps as before,

we can rewrite C̃2 as follows:

C̃2 = (1 + r)m + (1 + r + x̃ − r) b − tAb (x̃ − r)

= (1 + r) (m + b) + (1 − tA) (x̃ − r) b

= (1 + r) (h0 − C1) + (1 − tA) (x̃ − r) b, (4.20)

where h0 is human wealth and we have used (4.3) in the final step.

Using (4.20) in (4.6), expected lifetime utility can now be written as:

E(Λ̃) = U (C1) +
1

1 + ρ

∫ ∞

−1
f (x̃)U

(

(1 + r) (h0 − C1) + (1 − tA) (x̃ − r) b
)

dx̃. (4.21)

Expressed in this manner, the savings decision is the choice of current consumption (which implies the

choice of b + m) and the portfolio decision is the choice of b (which then implies the choice of the portfolio

share of the safe asset, ω). The exogenous variables to the household are r, h0, tA, and (the parameters

of) the distribution of x̃.

The first-order necessary conditions for the optimal savings and portfolio decisions are, respectively,
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∂E(Λ̃)/∂C1 = 0 and ∂E(Λ̃)/∂b = 0 or:

U′ (C1) =
1 + r

1 + ρ
E
(
U′(C̃2)

)
(4.22)

0 = E
(
U′(C̃2) (x̃ − r)

)
, (4.23)

where we have used the fact that ρ and 1 − tA are non-stochastic in deriving (4.23).

Armed with this simple model we can determine how the tax rate affects current consumption and

the demand for the risky asset. The key thing to note is that the tax rate, tA, only enters the first-order

conditions (4.22) and (4.23) via it effect on future (stochastic) consumption, C̃2, which is defined in (4.20)

above. By partially differentiating (4.22)-(4.23) and (4.20) with respect to the tax rate we find:

U′′ (C1)
∂C1

∂tA
=

1 + r

1 + ρ
E

(

U′′(C̃2)
∂C̃2

∂tA

)

, (4.24)

0 = E

(

U′′(C̃2) (x̃ − r)
∂C̃2

∂tA

)

, (4.25)

∂C̃2

∂tA
= − (1 + r)

∂C1

∂tA
+

[

(1 − tA)
∂b

∂tA
− b

]

(x̃ − r) . (4.26)

Given that U′′(C̃2) < 0, the only possible way for both (4.24) and (4.25) to hold simultaneously for all

realizations of x̃, is if ∂C̃2/∂tA = 0. It follows from (4.26) that this is the case if and only if the following

conditions are both satisfied:

∂C1

∂tA
= 0, (4.27)

∂b

∂tA
=

b

1 − tA
> 0. (4.28)

Equation (4.27) shows that present consumption (and thus saving) is not changed if the tax is changed,

whereas (4.28) shows that an increase in the tax leads to an increase in the demand for the risky asset!

The intuition behind this Domar-Musgrave result is as follows. By adopting the portfolio rule (4.28), the

household is able to hold constant the probability distribution of consumption in the second period (C̃2).

To show that this is indeed the case, consider the mean of future consumption:

E(C̃2) ≡ E ((1 + r) (h0 − C1) + (1 − tA) (x̃ − r) b) ⇒

∂E(C̃2)

∂tA
= E

([

(1 − tA)
∂b

∂tA
− b

]

(x̃ − r)

)

= 0. (4.29)

Similarly, for the variance of future consumption we find:

V(C̃2) ≡ E
(
C̃2 − E(C̃2)

)2
⇒

∂V(C̃2)

∂tA
= E

(

2(C̃2 − E(C̃2))

[
∂C̃2

∂tA
−

∂E(C̃2)

∂tA

])

= 0, (4.30)
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and similarly for all higher-order moments of the distribution. Given that the originally chosen distribu-

tion was optimal to start with, the agent continues to select it given that it is available even after the tax

is changed (Sandmo, 1985, p. 295). Note that this conclusion is independent of the shape of the agent’s

preferences. Furthermore, expected utility does not change as a result of the tax change (see also Figure

4.5 below for an illustration).

4.1.2.2 Gross taxation case

In the gross taxation case we assume that there is a non-stochastic tax, tA, on the gross return on both

assets. The tax base is thus equal to bx̃ + rm and the real budget constraints consist of equation (4.3) and:

C̃2 = [1 + r (1 − tA)]m + [1 + x̃ (1 − tA)] b, (4.31)

where r (1 − tA) is the (deterministic) after-tax yield on the safe asset, and x̃ (1 − tA) is the (stochastic)

after-tax yield on the risky asset. We can rewrite C̃2 as follows:

C̃2 = [1 + r (1 − tA)] (m + b) + (1 − tA) (x̃ − r) b

= [1 + r (1 − tA)] (h0 − C1) + (1 − tA) (x̃ − r) b, (4.32)

where we have used (4.3) in the final step. By substituting (4.32) into (4.6) we obtain the expression for

lifetime utility:

E(Λ̃) = U (C1) +
1

1 + ρ

∫ ∞

−1
f (x̃)U

(

[1 + r (1 − tA)] (h0 − C1) + (1 − tA) (x̃ − r) b
)

dx̃. (4.33)

The first-order necessary conditions for, respectively, the optimal savings and portfolio decisions are:

U′ (C1) =
1 + r (1 − tA)

1 + ρ
E
(
U′(C̃2)

)
, (4.34)

0 = E
(
U′(C̃2) (x̃ − r)

)
. (4.35)

How does the tax rate affect current consumption and the demand for the risky asset? As for the net

taxation case, the tax rate enters the first-order conditions (4.34)-(4.35) via the expression for C̃2 (given

in (4.32) above). Unlike for the net taxation case, however, the tax also distorts the Euler equation (4.34).

Since there are competing wealth and substitution effects, no unambiguous conclusion is possible about

the relationship between risk taking and the tax rate in the gross taxation case. Indeed, by differentiating

(4.34)-(4.35) and (4.32) with respect to the tax rate we find:

U′′ (C1)
∂C1

∂tA
=

1 + r (1 − tA)

1 + ρ
E

(

U′′(C̃2)
∂C̃2

∂tA

)

−
r

1 + ρ
E

(

U′(C̃2)
∂C̃2

∂tA

)

, (4.36)

0 = E

(

U′′(C̃2) (x̃ − r)
∂C̃2

∂tA

)

, (4.37)
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∂C̃2

∂tA
= − [1 + r (1 − tA)]

∂C1

∂tA
− r (h0 − C1) +

[

(1 − tA)
∂b

∂tA
− b

]

(x̃ − r) . (4.38)

Comparing these expressions to (4.24)-(4.26), we find that there are additional terms in both (4.36) and

(4.38). As a result, it is no longer optimal for the household to adopt (4.27)-(4.28). In the interest of space,

the full implications of (4.36)-(4.37) are studied in an exercise for this chapter. Here it suffices to note that

the solution is much more complicated than (4.27)-(4.28) because the optimal rule now depends on the

shape of the agent’s preferences. Although no firm general conclusion are possible, Sandmo (1985, p.

297) argues that for reasonable parameter values the substitution effect is likely to dominate the wealth

effect so that the Domar-Musgrave view continues to hold even in the gross taxation case.

4.2 Portfolio decision in isolation

In this section we study the portfolio decision in isolation, i.e. we step back from the two-period

consumption-saving model and focus only on the household’s choice of portfolio investment. One

advantage of doing so is that it allows us to investigate in more detail the role of preferences in the

portfolio decision.

The key assumptions we employ in this section are the following. The individual household is

assumed to maximize expected utility of wealth at the end of the period (this is not unlike our C̃2 in

the model of Section 4.1). The household is risk-averse and can invest in two assets, namely a safe asset

with a certain yield of r, and a risky asset with an uncertain yield x̃. To keep the analysis as simple as

possible, a very simple probability distribution for x̃ is postulated. Indeed, it is assumed that only two

states are possible for the yield on the risky asset, namely a state in which the yield is low (subscript “L”)

and one in which the yield is high (subscript “H”). The probability of a low yield (x̃ = xL < r) is πL and

the probability of a high yield (x̃ = xH > r) is πH ≡ 1 − πL. The analytical advantage of this two-state

model lies in the fact that a simple graphical treatment is possible (see also Stiglitz (1969) and Atkinson

and Stiglitz (1980, lecture 4)).

The amount of wealth to be invested is given by:

A0 ≡ b + m, (4.39)

where A0 is initial wealth (exogenously given), b is the amount of risky assets, and m is the amount of

safe assets. Depending on the household’s investment decision, final wealth is stochastic:

Ã1 =







AL ≡ m (1 + r) + b (1 + xL) with probability πL

AH ≡ m (1 + r) + b (1 + xH) with probability 1 − πL

, (4.40)

where AL and AH denote final wealth in, respectively, the low-yield and the high-yield case. Note that
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Figure 4.1: Risk aversion and the risk premium

the household can influence AL and AH by choice of b.

Utility is stochastic and depends on final wealth, i.e. utility is U(Ã1). Risk aversion implies that the

utility function features the following derivatives:

U′(Ã1) > 0, U′′(Ã1) < 0. (4.41)

Intuitively, a risk averse household prefers a safe final wealth of Ā over a random distribution with

the mean of final wealth equal to Ā. Graphically this is shown in Figure 4.1. The utility of the certain

prospect is U(Ā). The stochastic prospect consists of final wealth Ã1 = Ā− h with probability 1
2 or Ã1 =

Ā + h with probability 1
2 . The expected value of the stochastic prospect is thus by construction equal to

the certain prospect, i.e. E(Ã1) = Ā. The expected utility of the stochastic prospect is E(U(Ã1)), which

is at point D. The so-called risk premium is equal to ΠR, where ΠR is such that U (Ā − ΠR) = E(U(Ã1)).

Clearly, ΠR is positive for a risk-averse household because such a household needs to be compensated

for accepting some risk. Note also that ΠR in general depends on both the distribution of x̃ and on the

shape of the utility function (see the classic analysis by Pratt (1964)).

Expected utility can be written as:

E(U(Ã1)) ≡ πLU (AL) + (1 − πL)U (AH) , (4.42)

where AL and AH are defined in (4.40) above. The household chooses b and m in order to maximize

(4.42) subject to the wealth constraint (4.39). In Figure 4.2 the optimum portfolio choice is illustrated.
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Figure 4.2: The optimal portfolio decision

Final wealth in the “bad” and the “good” state is measured on, respectively, the vertical axis and the

horizontal axis. The perfectly safe portfolio (b = 0, m = A0) is represented by point S. This point lies

along the 45-degree line because final wealth is the same in both states (no risk is taken by the household

at all!). Point R represents the perfectly risky portfolio (m = 0, b = A0). For that portfolio, final wealth

equals AL = (1 + xL) A0 with probability πL and AH = (1 + xH) A0 with probability 1−πL. By varying

b (and m, such that b + m = A0) any portfolio between points S and R is attainable.

The mathematical expression for the budget line SR is obtained as follows. First, we note from (4.39)-

(4.40) that:

AL = (1 + r) A0 − b (r − xL) , (4.43)

AH = (1 + r) A0 + b (xH − r) . (4.44)

Second, by solving (4.44) for b and substituting the resulting expression in (4.43) we find:

AL = −
r − xL

xH − r
AH +

xH − xL

xH − r
(1 + r) A0. (4.45)

The budget line is downward sloping and an increase in the amount to be invested shifts it in a parallel

fashion to the right (these results follow from the assumption xL < r < xH).

The slope of the indifference curve is given by:

dE(U(Ã1)) ≡ πLU′ (AL) dAL + (1 − πL)U′ (AH) dAH = 0 ⇔

dAL

dAH
= −

1 − πL

πL

U′ (AH)

U′ (AL)
< 0. (4.46)
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In an interior optimum, the indifference curve is tangent to the budget line. It follows from (4.45) and

(4.46) that b is chosen such that:

1 − πL

πL

U′ (AH)

U′ (AL)
=

r − xL

xH − r
. (4.47)

The interior optimum is at point E0 in Figure 4.2.

An ancient theorem from Greek antiquity can be used to deduce something about the optimal choice

of risky assets. We know from the Theorem of Pythagoras that the length of the line segment SE0 is

equal to:

(length of) SE0 =

√

(SA)2 + (AE0)
2 =

√

[b (r − xL)]
2 + [b (xH − r)]2

= b

√

(r − xL)
2 + (xH − r)2. (4.48)

Similarly, we know that the length of line segment SR is:

(length of) SR =

√

(SB)2 + (BR)2 =

√

[A0 (r − xL)]
2 + [A0 (xH − r)]2

= A0

√

(r − xL)
2 + (xH − r)2. (4.49)

By combining the expressions in (4.48)-(4.49), we find that the portfolio share of the risky asset is repre-

sented geometrically by:

b

A0
=

(length of) SE0

(length of) SR
. (4.50)

This result is intuitively obvious. The closer E0 is to the perfectly safe point S, the smaller is the portfolio

share of risky assets.

4.2.1 Wealth effects in the portfolio decision

How does the optimum portfolio depend on the household’s initial wealth level, A0? It is clear from

(4.45) that an increase in A0 shifts the budget line in a parallel fashion to the right, say from S0R0 to S1R1

in Figure 4.3. Not surprisingly, the effect on the optimum portfolio depends on the form of the utility

function. We consider two often-used functional forms.
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4.2.1.1 CRRA preferences

In Figure 4.3 we plot the case for iso-elastic (or CRRA) preferences over terminal wealth:

U(Ã1) =







(1/γR)
[
Ã

γR
1 − 1

]
if γR 6= 0, γR < 1

ln Ã1 if γR = 0,

, (4.51)

where 1 − γR is the (constant) coefficient of relative risk aversion.5 Using (4.51), the first-order condition

(4.47) simplifies to:

1 − πL

πL

U′ (AH)

U′ (AL)
=

r − xL

xH − r
⇔

1 − πL

πL

A
1−γR
L

A
1−γR
H

=
r − xL

xH − r
⇔

AL

AH
=

(
πL

1 − πL

r − xL

xH − r

)1/(1−γR)

≡ θR. (4.52)

In the optimum, AL = θR AH (with θR a positive constant) so the wealth expansion path is a straight line

from the origin–see the line WEP in Figure 4.3. It follows that the same portfolio composition is chosen

at all wealth levels and that the wealth elasticity of the demand for the risky asset is unity.

We can find the level solutions for b and m as follows. First, by substituting (4.52) into the budget

line (4.45) we obtain the solutions for AH and AL:

AH =
(xH − xL) (1 + r) A0

θR (xH − r) + (r − xL)
, (4.53)

AL =
θR (xH − xL) (1 + r) A0

θR (xH − r) + (r − xL)
. (4.54)

Next, we note that the optimal value for b can be recovered by substituting (4.53) into (4.44):

b =
(1 − θR) (1 + r) A0

θR (xH − r) + (r − xL)
(4.55)

Finally, by using (4.55) in (4.39) we obtain the optimal value for m:

m = A0 − b

=
[θR (1 + xH)− (1 + xL)] A0

θR (xH − r) + (r − xL)
. (4.56)

5The coefficient of relative risk aversion is defined as:

RR (z) ≡ −
zU′′ (z)

U′ (z)
.

For iso-elastic preferences, RR (z) = 1 − γR, a constant. Such preferences are therefore often referred to as Constant Relative Risk
Aversion or CRRA preferences. See Gollier (2001, p. 27).
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Figure 4.3: Wealth expansion path for CRRA preferences

A very risk averse investor has a very high value of 1 − γR and will choose to stay close to point S.

For such an investor, θR will be close to unity (see (4.52)), b will be close to zero (see (4.55)), and m will

be close to A0 (see (4.56)). Conversely, an investor who is only mildly risk averse will be characterized

by a low (but positive) value of 1 − γR and will choose a value of θR close to unity.

4.2.1.2 CARA preferences

In Figure 4.4 we illustrate the case for exponential (or CARA) preferences:

U(Ã1) = −
exp[−γA Ã1]

γA
, (4.57)

where γA (> 0) is the (constant) measure of absolute risk aversion.6 The first-order condition (4.47) for

such preferences simplifies to:

1 − πL

πL

U′ (AH)

U′ (AL)
=

r − xL

xH − r
⇔

1 − πL

πL

exp [−γA AH ]

exp [−γA AL]
=

r − xL

xH − r
⇔

AL − AH =
1

γA
ln

(
πL

1 − πL

r − xL

xH − r

)

≡ −θA. (4.58)

6The coefficient of absolute risk aversion is defined as:

RA (z) ≡ −
U′′ (z)

U′ (z)
.

For exponential preferences, RA (z) = 1 − γA, a constant. Such preferences are therefore often referred to as Constant Absolute
Risk Aversion or CARA preferences. See Gollier (2001, p. 27).
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Figure 4.4: Wealth expansion path for CARA preferences

In the optimum, AL = AH − θA (with θA a positive constant), so the wealth expansion path is a straight

line parallel to the 45
◦

line–see the line WEP in Figure 4.4. In this case the wealth elasticity of the demand

for the risky asset is zero, i.e. the same amount of risky assets is chosen for all wealth levels.

The level solutions are found as follows. By substituting (4.58) into the budget line (4.45) we obtain:

AH =
θA (xH − r) + (xH − xL) (1 + r) A0

xH − xL
, (4.59)

AL =
θA (xL − r) + (xH − xL) (1 + r) A0

xH − xL
. (4.60)

We infer from (4.43)-(4.44) that AH − AL = b (xH − xL) so that b is equal to:

b =
θA

xH − xL
, (4.61)

which is independent of A0 as was asserted above. Finally, the optimal value for m is found by using

(4.61) and (4.39):

m ≡ A0 − b =
A0 (xH − xL)− θA

xH − xL
. (4.62)

In this case, a very risk averse investor has a very high value of γA and a very low value for θA (see

(4.58)), so that the wealth expansion path will be close to the “safe haven” of the 45-degree line.
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4.2.1.3 Wealth elasticity

We have established that the wealth elasticity of the demand for the risky asset is unity for the case of

CRRA preferences (see (4.55)) and zero for the case of CARA preferences (see (4.61)). The remainder of

this subsection studies how the wealth elasticity is affected by the investor’s risk attitude in the general

case. Equation (4.47) defines an implicit function relating the optimal demand for risky assets, b, to the

initial wealth level, A0. For convenience, we restate (4.47) in a lightly rewritten format as:

(r − xL)πLU′ (AL) = (xH − r) (1 − πL)U′ (AH) . (4.63)

By differentiating this expression with respect to b and A0, and noting (4.43)-(4.44), we obtain:

(r − xL)πLU′′ (AL) [(1 + r) dA0 − (r − xL) db] = (xH − r) (1 − πL)U′′ (AH)

× [(1 + r) dA0 + (xH − r) db] , (4.64)

or:

1

1 + r

db

dA0
=

[− (r − xL)πLU′′ (AL) + (xH − r) (1 − πL)U′′ (AH)]

−
[

(r − xL)
2 πLU′′ (AL) + (xH − r)2 (1 − πL)U′′ (AH)

] . (4.65)

Clearly, the denominator of (4.65) is positive (because U′′ (·) < 0, (r − xL)
2
> 0, and (xH − r)2

> 0).

The sign of db/dA0 is thus determined by the sign of the numerator, which can be written in short-hand

notation as E((x̃ − r)U′′(Ã1)). Since x̃ − r is negative in the bad state and positive in the good state, the

sign of the numerator depends on the curvature of the utility function. It is thus possible to relate the

sign of db/dA0 to a measure of the investor’s risk attitude.

By using the coefficient of absolute risk aversion, RA (z) ≡ −U′′ (z) /U′ (z), it is possible to write

(4.65) as:

1

1 + r

db

dA0
=

RA (AL)− RA (AH)

(r − xL) RA (AL) + (xH − r) RA (AH)
, (4.66)

where we have used the first-order condition (4.63) to simplify the expression. Whilst the denominator

continues to be positive (as RA (·) > 0 and xL < r < xH), the sign of the numerator hinges only on the

difference between RA (AL) and RA (AH). With CARA preferences, RA (AL) = RA (AH) = 1 − γA (a

constant) and it follows that db/dA0 = 0. As Arrow (1971, p. 96) has pointed out, however, everyday

observation seems to suggests that the degree of absolute risk aversion is decreasing in wealth, i.e.

R′
A (z) < 0. Preferences for which this holds are called DARA preferences (where DARA stands for

Diminishing Absolute Risk Aversion). In the context of our two-state model, with DARA preferences

RA (AL) exceeds RA (AH) and it follows from (4.66) that the wealth elasticity of the demand for the

risky asset is positive.
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In a similar fashion we can use the coefficient of relative risk aversion, RR (z) ≡ −zU′′ (z) /U′ (z),

and write (4.65) in elasticity format as:

A0

b

db

dA0
=

(1 + r) A0

b

[
RR(AL)

AL
− RR(AH)

AH

]

(r − xL)
RR(AL)

AL
+ (xH − r)

RR(AH)
AH

=
(1 + r) A0

b

[AH RR (AL)− ALRR (AH)]

(r − xL) AH RR (AL) + (xH − r) ALRR (AH)

=
(1 + r) A0

b

b + φAL
xH−xL

(1 + r) A0 −
φAL(xH−r)

xH−xL

, (4.67)

where φ ≡ [RR (AL)− RR (AH)] /RR (AL).
7 We reach a similar conclusion as for the DARA case. If

the utility function features Diminishing Relative Risk Aversion (DRRA), then R′
R (z) < 0 and in the

two-state model φ > 0. It follows from (4.67) that the wealth elasticity of the demand for the risky asset

is greater than unity.

As is pointed out by Gollier (2001, p. 25), assuming preferences to exhibit DRRA constitutes a much

stronger requirement than assuming the DARA property. This can be readily seen by noting that the

two measures of risk aversion can be related according to RR (z) ≡ zRA (z), so that R′
R (z) ≡ RA (z) +

zR′
A (z). DARA only requires R′

A (z) to be negative. DRRA requires R′
A (z) to be sufficiently negative

(to offset the positive term RA (z) in the expression for R′
R (z)). He also suggests that there is no clear

evidence in favour of the DRRA assumption, whereas there is for the DARA property.

7Once again we have made use of the first-order condition (4.63) to obtain the expression in the first line. In going from the
second to the third line, it is useful to note that (4.43) and (4.44) imply:

(r − xL) AH + (xH − r) AL = (xH − xL) (1 + r) A0.
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Intermezzo 4.1

Introspective estimate for the degree of risk aversion. In a recent monograph on the eco-

nomics of risk, Gollier (2001, pp. 30-31) presents an interesting way to estimate a person’s

coefficient of relative risk aversion by introspection. Suppose you are the person we are

studying today. The maintained assumption in this approach is that your preferences are of

the CRRA type:

U(Ã1) =







(1/γR)
[
Ã

γR
1 − 1

]
if γR 6= 0, γR < 1

ln Ã1 if γR = 0,

.

The objective is to find the magnitude of your coefficient of relative risk aversion, RR ≡

1 − γR.

Thought experiment. Answer the following question for yourself: What is the share of your

wealth that you are willing to pay in order to escape the risk of gaining or losing a share α of

it with equal probability? Denote the share that you are willing to pay π̂. Then your answer

implies that you are indifferent between the following prospects:

1

2

[
[(1 − α) A]γR

γR

]

+
1

2

[
[(1 + α) A]γR

γR

]

=
[(1 − π̂) A]γR

γR
⇔

(1 − α)γR

2
+

(1 + α)γR

2
= (1 − π̂)γR . (I.1)

We can use (I.1) to compute γR once we know π̂ (from you) and fix a value of α in the thought

experiment.

Implied estimate α = 10% α = 30%

1 − γR = 0.5 0.3 2.3

1 − γR = 1 0.5 4.6

1 − γR = 4 2.0 16.0

1 − γR = 10 4.4 24.4

1 − γR = 40 8.4 28.7

The above Table (which is taken from Gollier) shows implied estimates of 1 − γR for

α = 10% and α = 30%. To interpret these results, consider the column labeled α = 10%.

Reasonable answers for π̂ are in the range 0.5% to 2%, which implies a value for 1 − γR in

the range of 1 to 4. Conversely, note that 1 − γR = 40 implies (rather unreasonably) that
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you would pay 8.4% of your wealth to avoid the risk of gaining or losing 10% with equal

probability. People are not that risk averse!

****

4.2.2 Effects of taxation

In this subsection we return to the theme of this chapter, namely the effects of taxation on risk taking.

We consider two types of taxes, namely a proportional wealth tax (tW), and a proportional tax (tA) on

either (i) the excess return on the risky asset or (ii) on both assets. Note that the latter two cases have

also been studied above in the two-period consumption-savings model. In the first instance we assume

full loss offset, i.e. losses incurred in the bad state can be deducted in full from the tax base.

The proportional wealth tax affects terminal wealth according to:

Ã1 =







AL ≡ (1 − tW) [A0 (1 + r) + b (xL − r)] with probability πL

AH ≡ (1 − tW) [A0 (1 + r) + b (xH − r)] with probability πH

. (4.68)

It follows from (4.68) that the budget line in (AL, AH)-space is given by:

AL = −
r − xL

xH − r
AH +

xH − xL

xH − r
(1 + r) (1 − tW) A0. (4.69)

As can be seen from (4.69), the wealth tax has no effect on the slope of the budget line: the term (1 − tW)

simply reduces initial wealth. The effects of an decrease in the wealth tax are illustrated in Figure 4.3

(for CRRA preferences) and in Figure 4.4 (for CARA preferences). In both diagrams the equilibrium

shifts from E0 to E1. Since the slope of the budget line is not affected, the optimal point is located on the

initial wealth expansion path WEP in both figures. For the CRRA case, the demand for the risky asset

is increased as a result of the increase in after-tax wealth (see (4.55)). In contrast, for the CARA case, the

demand for the risky asset is unaffected by the wealth increase (see (4.61)).

A proportional income tax on the excess return on the risky asset affects terminal wealth according to:

Ã1 =







AL ≡ A0 (1 + r) + b (1 − tA) (xL − r) with probability πL

AH ≡ A0 (1 + r) + b (1 − tA) (xH − r) with probability πH

, (4.70)

so that the budget line in (AL, AH)-space is still as given in (4.45) above:

AL = −
r − xL

xH − r
AH +

xH − xL

xH − r
(1 + r) A0. (4.71)
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Figure 4.5: Proportional income tax on excess return (CRRA preferences)

Obviously, the tax affects neither the slope nor the position of the budget line. The only thing that it

does affect is the length of the budget line. Indeed, it follows from (4.70) that under the perfectly risky

portfolio (for which a = 0 and b = A0), final wealth is equal to AL = [1 + r + (1 − tA) (xL − r)] is the

bad state and AH = [1 + r + (1 − tA) (xH − r)] in the good state. In terms of Figure 4.5, an increase in

tA thus moves the perfectly risky point from R0 to R1. Barring corner solutions, the same optimal point

can still be attained (at point E0). The portfolio share of the risky asset rises, from SE0/SR0 to SE0/SR1.

(Note that SR1 is (1 − tA) times SR0.)

A proportional income tax on the return on both assets affects terminal wealth according to:

Ã1 =







AL ≡ A0 [1 + r (1 − tA)] + b (1 − tA) (xL − r) prob. πL

AH ≡ A0 [1 + r (1 − tA)] + b (1 − tA) (xH − r) prob. πH

, (4.72)

so that the budget line in (AL, AH)-space becomes:

AL = −
r − xL

xH − r
AH +

xH − xL

xH − r
[1 + r (1 − tA)] A0. (4.73)

The slope of the budget line is unaffected by the tax, and tA acts as a tax on initial wealth. An increase

in tA shifts the budget line in a parallel fashion towards the origin. In Figure 4.6 the case of CRRA

preferences is illustrated. The equilibrium shifts from E0 to E1. The EPL line represents the locus for

which the portfolio composition is the same as at point E0 (b/A0 constant). Since point E1 lies to the

right of the EPL line, the portfolio share of the risky asset increases as a result of the tax change (i.e.
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Figure 4.6: Proportional income tax (CRRA preferences)

S1E1/S1R1 is larger than S0E0/S0R0).8

4.2.2.1 No loss offsets

Matters are much less clear-cut if the government is a fair-weather friend and there is no loss offset

provision. To show why this is so, consider the special case in which there is a zero return on the safe

asset (r = 0), a negative return on the risky asset in the bad state (xL < 0), and preferences are of the

CRRA type. A proportional interest income tax now affects terminal wealth according to:

Ã1 =







AL ≡ A0 + bxL with probability πL

AH ≡ A0 + b (1 − tA) xH with probability πH

. (4.74)

In the bad state the investor loses −bxL (> 0) which he cannot deduct against tax liabilities. In the good

state the gains are bxH which are taxed at the proportional rate tA. The budget line is now given by:

AL =
xL

xH (1 − tA)
AH +

[xH (1 − tA)− xL] A0

xH (1 − tA)
. (4.75)

8In Figure 4.6, the line IR1R0 connects all purely risky points (for which b = A0). The mathematical expression for this line is
obtained as follows. Substituting b = A0 into (4.72) we find:

AL = [1 + xL (1 − tA)] A0, AH = [1 + xH (1 − tA)] A0.

Eliminating (1 − tA) we find:

AL − A0 =
xL

xH
(AH − A0) ,

which passes through point I and has a positive slope less than unity (because xH > xL).
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In terms of Figure 4.7, the safe point S is unaffected by the tax because r = 0 so no taxable income is

generated at that point. An increase in the tax rotates the budget line clockwise and moves the pure

risky point from R0 to R1. As a result of the tax change, the equilibrium shifts from E0 to E1, there are

both substitution and wealth effects, and the usual Hicksian decomposition can be made. Indeed, in

terms of the optimal choices for AH and AL, the pure substitution effect is represented by the move

from E0 to E′ whilst the income effect is the move from E′ to E1.

The effect on the demand for the risky asset can be determined graphically by noting that the vertical

distance between the safe point S and the initially optimal point E0 is equal to −b0xL, where b0 is the

initial demand for the risky asset. Similarly, the vertical distance between S and E1 is equal to −b1xL,

where b1 is the new optimal choice for b. Since E1 lies to the north of E0, it follows that for the case drawn

in Figure 4.7, the demand for the risky asset decreases as a result of the tax increase. If compensation

is made only if the good state occurs (and the investor has to pay the tax), then the vertical distance

between S and E′ measures −b′xL, where b′ is the compensated (Hicksian) demand for the risky asset.

Formally, the Slutsky equation for the demand for the risky asset is given by:

∂b

∂x∗H
=

(
∂b

∂x∗H

)

EU0

+ b
∂b

∂ZH
, (4.76)

where x∗H ≡ xH (1 − tA) is the after-tax return on the risky asset in the good state and ZH is the (hy-

pothetical) compensation in the good state.9 The first term on the right-hand side of (4.76) is the pure

substitution effect, which is positive. The second term is a negative income effect due to compensation.

It follows that the slope of the uncompensated demand for the risky asset is ambiguous. An increase in

the tax tA leads to a decrease in x∗H and thus to a decrease in the Hicksian demand for the risky asset.

Since the income effect is negative, the uncompensated effect of the tax increase is also ambiguous (i.e.

∂b/∂tA = [∂b/∂tA]EU0
− bxH (∂b/∂ZH) R 0).

4.2.3 Many risky assets

Up to this point attention has been restricted to the case of two assets, of which one is safe and one is

risky. In this subsection we briefly discuss how the portfolio model can be extended to the case of many

risky assets. The approach adopted here was originally suggested by Sandmo (1977). Just as in the basic

model, the utility function depends on final wealth, Ã1, as in equation (4.41) above, and there is one safe

9See Diamond and Yaari (1972), Fischer (1972), and Sandmo (1977) on the derivation of comparative static effects (including
Hicksian decomposition) in two-period models with many risky assets. Sandmo (1977, p. 373) computes a Slutsky equation for
the demand for the risky asset with respect to a change in the expected rate of return x̄ ≡ πLxL + (1 − πL) x∗H and finds:

∂b

∂x̄
=

(
∂b

∂x̄

)

EU0

+
b

1 + r

∂b

∂A0
.

The own substitution effect is positive. The income effect is also positive if the risky asset is normal (as is the case with CRRA
preferences). Hence, the uncompensated demand slopes upward. This form of the Slutsky equation differs from (4.76) because
there only x∗H is changed, so that both the mean return on the risky asset and its spread around the mean are changed. See also
below.
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Figure 4.7: No loss offset and the proportional income tax (CRRA preferences)

asset, denoted by m, which carries a certain rate of return r. In contrast, there are now n risky assets,

denoted by bi, with different stochastic return characteristics, i.e. no two assets have perfectly correlated

returns. The investor’s budget constraint (4.39) is thus generalized to:

A0 = m +
n

∑
i=1

bi, (4.77)

where m and bi are allowed to be negative (Note that a negative holding of any asset is interpreted as a

short sale or debt). The expression for final wealth is:

Ã1 ≡ (1 + r)m +
n

∑
i=1

bi (1 + x̃i) , (4.78)

where x̃i is the stochastic return on risky asset bi. To prepare for the comparative static exercises to come,

the stochastic return on asset bi is written as:

x̃i − r = µi + γiεi, (4.79)

where µi is a parameter representing the expected (mean) excess return on the risky asset, γi is a shift

parameter (set equal to unity initially), and εi is a stochastic term with mean zero, i.e. E(εi) = 0 so that

it follows from (4.79) that the expected return on the risky asset is E(x̃i) = r + µi. The advantage of

this formulation is that it allows for two interesting types of comparative static experiments. First, by

holding constant γi (= 1) and changing µi, the effects on asset demands of a change in the mean return

on risky asset bi can be computed. Second, by holding constant µi and changing γi the effects on asset
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demands of an increase in the riskiness of bi can be studied.

The key insight of Sandmo (1977) is that the derivation of comparative static results is straightfor-

ward provided the model is rewritten in the standard format (employed, for example, in Chapter 2

above) of (expected) utility maximization subject to a single budget constraint. The transformed model

make use of the following auxiliary variables:

AC
1 ≡ (1 + r)m +

n

∑
i=1

bi (1 + r + µi) , (4.80)

b∗i ≡ −γibi, (4.81)

Pi ≡
µi

(1 + r) γi
. (4.82)

In equation (4.80), AC
1 represents terminal wealth that would be obtained under the investment portfolio

(m, bi) if all assets carried a certain return (i.e. if εi ≡ 0 for all i). In the maximization problem, the

investor chooses the “commodities” AC
1 and b∗i , rather than m and bi. Note that Pi is (4.82) is interpreted

as the price of commodity b∗i .

Using the transformed variables, the expression for final wealth, given in (4.78) above, can be rewrit-

ten as follows:

Ã1 ≡ AC
1 −

n

∑
i=1

b∗i εi. (4.83)

Similarly, the budget constraint (4.77) can be rewritten as:

A0 =
AC

1

1 + r
+

n

∑
i=1

Pib
∗
i , (4.84)

where 1/ (1 + r) can thus be seen as the price of commodity AC
1 . The investor chooses AC

1 and b∗i (for

i = 1, · · · , n) in order to maximize expected utility E(U(Ã1)), subject to the budget constraint (4.84)

and the definition of terminal wealth (4.83). Formally this optimization problem has exactly the same

structure as the standard consumption choice model. Hence, it follows that the Marshallian demand

for b∗i can be written as b∗i (1/ (1 + r) , P1, · · · , Pn, A0) and that the Slutsky equation for b∗i takes the

following form:10

∂b∗i
∂Pj

=

(

∂b∗i
∂Pj

)

EU0

− b∗j
∂b∗i
∂A0

, (4.85)

where the compensated derivatives feature the usual properties of (i) negative “own” effects ((∂b∗i /∂Pj)EU0
<

0) and Slutsky symmetry ((∂b∗i /∂Pj)EU0
= (∂b∗j /∂Pi)EU0

).

By using (4.81) and retransforming, we find that the Marshallian demand for risky asset bi can be

10The Slutsky equation for the standard consumption model is formally derived in an Intermezzo in Chapter 2 above.
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written as:

bi = −
1

γi
b∗i (1/ (1 + r) , P1, · · · , Pn, A0) . (4.86)

Armed with this expression we can investigate the comparative static effects of changes in µi and/or γi.

Consider first an increase in the mean return of a risky asset bj. By differentiating (4.86) with respect to

µj (keeping γi = 1 for all i), and noting (4.82) and (4.85)-(4.86) we find:

∂bi

∂µj
=

(

∂bi

∂µj

)

EU0

+
bj

1 + r

∂bi

∂A0
. (4.87)

In the remainder of this subsection we assume (for convenience of exposition) that there are no short

positions in risky assets (bi > 0) and that mean excess returns are positive (µi > 0 for all i = 1, · · · , n).

Equation (4.87) shows that for normal assets (∂bi/∂A0 > 0), the own effect of an increase in the mean

return is positive (∂bi/∂µi > 0) because both the pure substitution effect (first term on the right-hand

side of (4.87)) and the income effect (second term on the right-hand side) are positive.

Next, we consider an increase in the riskiness of asset bj. By differentiating (4.86) with respect to γj

(keeping constant µi for all i), and noting (4.82) we obtain:

∂bi

∂γj
= −µj

∂bi

∂µj
(for i 6= j), (4.88)

∂bi

∂γi
= −µi

∂bi

∂µi
− bi (for all i). (4.89)

According to (4.88), for assets bj with a positive expected excess return (µj > 0), an increase in their

riskiness has the opposite effect (on asset bi) of a decrease in their average return. The own effect of an

increase in riskiness is given in (4.89). For normal assets, an increase in riskiness leads to a decrease in

the demand for that asset as both terms on the right-hand side of (4.89) are positive in that case.

4.3 Extensions and applications

In this section we study a number of extensions and applications of the models discussed so far. Through-

out this section we abstract from capital risk and instead assume that the household faces uninsurable

income risk, i.e. its (current or future) income is not known with certainty and there is no income in-

surance available. In the first subsection, labour supply is exogenous and the effect of income risk on

the savings decision is studied. In the second subsection we endogenize the labour supply decision in

the face of wage and non-wage income uncertainty. Finally, in the third subsection we briefly study the

topic of tax evasion.
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4.3.1 Income risk and precautionary saving

How does future income uncertainty affect the current consumption and savings decision? This ques-

tion was first studied in the context of two-period models by Leland (1968), Sandmo (1970), and Drèze

and Modigliani (1972). Leland (1968, p. 465) defines precautionary saving as the additional amount of

saving that takes place because future income is stochastic rather than deterministic. In this subsection

we study the issue of precautionary saving in the context of a simplified version of the model by Sandmo

(1970).

To keep things as simple as possible, we assume that the household’s lifetime utility function is

intertemporally separable as in equation (4.5) above. We abstract from capital risk and assume that

there is a single asset carrying a certain rate of return r. Labour supply in both periods is equal to the

time endowment, L̄. The household budget constraints in the two periods are given by:

C1 + S1 = w1 L̄, (4.90)

C̃2 = w̃2 L̄ + (1 + r) S1, (4.91)

where S1 is saving in the current period, w1 is the current wage rate (known with certainty), and w̃2

is the stochastic future wage rate. As a result of wage uncertainty, and in the absence of insurance

opportunities, non-interest income is stochastic, as is future consumption. For the comparative statics

exercises we follow a similar approach as before, and write the future wage rate as:

w̃2 ≡ w̄2 + γε̃, (4.92)

where w̄ is expected (mean) future wage rate, γ is a shift parameter (set equal to unity initially), and

ε̃ is a stochastic term with mean zero, i.e. E(ε̃) = 0. The household knows the stochastic distribution

of ε̃. Two cases can be considered. First, by changing w̄2 (holding constant γ), the life-cycle effect on

current consumption and saving can be studied. Second, by holding constant the expected wage w̄2 and

changing γ the precautionary savings effect can be analyzed.

Because there is no capital risk, the savings decision constitutes a certain prospect (rather than a

temporal uncertain prospect as in Section 4.1 above) so that (4.90)-(4.91) can be consolidated into a

single lifetime budget constraint:

C̃2 = w̃2 L̄ + (w1 L̄ − C1) (1 + r) . (4.93)

The household chooses current consumption, C1 (and thus saving), in order to maximize lifetime utility

(4.5) subject to the constraint (4.93). The first-order condition for this maximization problem is given by:

dE(Λ̃)

dC1
= U′ (C1)−

1 + r

1 + ρ
E(U′(C̃2)) = 0. (4.94)
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Evaluated at the optimum choice for C1, the following second-order condition must be satisfied:

d2E(Λ̃)

dC2
1

≡ |∆0| ≡ U′′ (C1) +
(1 + r)2

1 + ρ
E(U′′(C̃2)) < 0. (4.95)

For a risk averse household, U′′ (z) < 0 for all z, |∆0| < 0, and the solution for C1 determined by (4.94) is

indeed the optimum. Suppressing all variables that are kept constant, we write the solution for current

consumption in general terms as C1 = C1 (w̄2, γ) and determine the partial derivatives in the usual

fashion.

4.3.1.1 Life-cycle effect

The life-cycle savings effect can be computed by differentiating the first-order condition (4.94) with

respect to C1 and w̄2 and noting (4.92)-(4.93). After some straightforward steps we obtain:

∂C1

∂w̄2
=

(1 + r) L̄

1 + ρ

E(U′′(C̃2))

|∆0|
> 0, (4.96)

where the sign follows from the fact that |∆0| < 0 and E(U′′(C̃2)) < 0. Just as in the deterministic case

of Chapter 3, current and future consumption are both normal goods. An increase in expected future

wage income leads to an increase in current consumption, a decrease in current saving, and an increase

in the expected level of future consumption. The latter effect can be demonstrated by substituting (4.92)

into (4.93), taking expectations (noting E(ε̃) = 0), and differentiating with respect to w̄2:

∂E(C̃2)

∂w̄2
= L̄ − (1 + r)

∂C1

∂w̄2
= L̄

E(U′′(C̃2))

|∆0|
> 0, (4.97)

where we have used (4.96) to arrive at the second expression. The property of risk aversion is all we

need to ensure normality of both goods.

4.3.1.2 Precautionary savings effect

To compute the precautionary savings effect we substitute (4.92)-(4.93) into (4.94) and differentiate with

respect to C1 and γ. After some straightforward steps we obtain:

∂C1

∂γ
=

(1 + r) L̄

1 + ρ

E(U′′(C̃2)ε̃)

|∆0|
⋚ 0. (4.98)

The effect of increased variability of future wage income is ambiguous in general. The sign of the effect

is determined by E(U′′(C̃2)ε̃) which is ambiguous. It follows from (4.92)-(4.93) that C̃2 is increasing in

ε̃, but this is not enough information to determine how U′′(C̃2) varies with ε̃. The assumption of risk

aversion just ensures that U′′ (z) < 0 for all z, but it is silent about the third derivative of the felicity

function. Clearly, if U′′′ (z) > 0 for all z, then U′′(C̃2) is increasing in ε̃ (U′′(C̃2) and ε̃ feature a positive
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correlation), so that E(U′′(C̃2)ε̃) > 0 and ∂C1/∂γ < 0 and thus ∂S1/∂γ > 0 (precautionary saving).

In a recent paper, Kimball (1990) formally proves that U′′′ (z) > 0 is a both a necessary and a suf-

ficient condition for the risk-averse household to exhibit a precautionary savings motive. He coins the

term prudence which is meant to capture the intensity of the precautionary savings motive (1990, p. 54).

Defining the index of absolute prudence by PA (z) ≡ −U′′′ (z) /U′′ (z), he furthermore demonstrates that,

in a model like ours, precautionary saving occurs if and only if PA (z) > 0.11 He concludes by noting

that “...the sign of the third derivative of the utility function governs the presence or absence of a pre-

cautionary saving motive just as the sign of the second derivative governs the presence or absence of

risk aversion” (1990, p. 68).

The index of absolute prudence can be related to the index of absolute risk aversion, RA (z) ≡

−U′′ (z) /U′ (z). Indeed, by differentiating RA (z) we find:

R′
A (z) = RA (z) [RA (z)− PA (z)] . (4.99)

Recall from the previous discussion that there are strong reasons to believe that preferences display

declining absolute risk aversion (DARA), i.e. R′
A (z) < 0. It follows from (4.99) that the DARA property

implies positive prudence, i.e. PA (z) > RA (z) > 0. So if DARA is a reasonable property then so is the

property of positive prudence (Kimball, 1990, p. 65).

4.3.2 Labour supply and risk

Block and Heineke (1973) were the first to study the optimal (static) labour supply decision in an en-

vironment in which either non-labour income or the wage rate is risky. Their model was subsequently

used by Eaton and Rosen (1980a) to study the effect of (optimal) income taxation with a risky wage rate.

In this subsection we present a simple version of the labour supply model and study its key features.

To keep things simple, it is assumed that the household utility function is separable in consumption

and leisure:

E(Λ̃) = E(U(C̃)) + E(V(L̄ − L)), (4.100)

where C is consumption, L is labour supply, and L̄ is the time endowment. The felicity functions feature

the usual properties, i.e. U′ (·) > 0 > U′′ (·) and V′ (·) > 0 > V′′ (·). The household chooses its optimal

labour supply in the face of uncertainty about its various income sources. Consumption is therefore

stochastic. Block and Heineke (1973) study two versions of the model. In the first version of the model,

the wage rate is known in advance, but non-wage income is stochastic. For this model, the budget

11Note that for the CRRA utility function defined in equation (4.51) we find PA (z) = (2 − γR) /z > 0. For for the CARA utility
function given in (4.57) we find PA (z) = γA > 0.
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constraint can be written as follows:

C̃ = wL + m̃, (4.101)

where m̃ is stochastic income from sources other than the labour market.

By substituting (4.101) into (4.100), expected utility depends on the single choice variable, L. The

first-order condition is thus given by:

dE(Λ̃)

dL
= wE(U′(wL + m̃))− V′(L̄ − L) = 0, (4.102)

where we have used the fact that E(V′(L̄ − L)) = V′(L̄ − L) and that the wage is known with certainty.

According to (4.102), the expected marginal utility of working a little more is equated to the marginal

disutility of supplying that additional unit of labour. At the optimum, the following second-order con-

dition is satisfied:

d2E(Λ̃)

dL2
≡ |∆1| = w2E(U′′(wL + m̃)) + V′′(L̄ − L) < 0, (4.103)

where the sign follows from the assumptions made regarding the felicity functions.

In order to investigate the effect of uncertainty on labour supply, we write non-labour income as:

m̃ ≡ m̄ + γε̃, (4.104)

where m̄ is the expected value of m̃, γ is a shift parameter (set equal to unity initially), and ε̃ is a stochastic

term with mean zero, i.e. E(ε̃) = 0. An increase in expected non-labour income affects labour supply as

follows:

∂L

∂m̄
=

wE(U′′(C̃))

− |∆1|
< 0, (4.105)

where the sign follows from the fact that |∆1| < 0 and U′′(C̃) < 0. For a given value of L, an increase in

m̄ shifts the distribution of C̃ to the right, and the distribution of U′(C̃) to the left. The expected marginal

utility of consumption falls and the household cuts back its labour supply as a result. Leisure is thus a

normal good.

An increase in the variability of non-labour income can be studied by holding constant m̄ and in-

creasing γ marginally. The effect on labour supply is:

∂L

∂γ
=

wE(U′′(C̃)ε̃)

− |∆1|
⋚ 0, (4.106)

where we have used the fact that γ = 1 initially. Just as in the case of precautionary savings, the effect
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of increased riskiness is ambiguous in general. Again, if the third derivative of U(C̃) is positive, and

the household displays positive prudence (now with respect to non-labour income fluctuations), then

U′′(C̃) is increasing in ε̃, E(U′′(C̃)ε̃) > 0, and labour supply increases as non-labour income becomes

more risky, ∂L/∂γ > 0.

In the second version of their model, Block and Heineke (1973) assume that non-labour income is

constant and the wage rate itself is stochastic. In that case, the household budget constraint is given by:

C̃ = w̃L + m, (4.107)

where w̃ is stochastic. The first- and second-order conditions for expected utility maximization are:

dE(Λ̃)

dL
= E(U′(w̃L + m)w̃)− V′(L̄ − L) = 0, (4.108)

d2E(Λ̃)

dL2
≡ |∆2| = E(U′′(w̃L + m̃)w̃2) + V′′(L̄ − L) < 0. (4.109)

Equation (4.108) differs substantially from its deterministic counterpart (4.102). Indeed, with a stochastic

wage, the optimal labour supply decision depends on a measure of the covariance between the wage rate

and the marginal utility of consumption, i.e. on E(U′(w̃L + m)w̃), rather than on the marginal utility of

consumption itself. Clearly, the second-order condition is satisfied (given the assumptions made about

preferences) because the covariance between U′′(C̃) and w̃2 must be negative, i.e. E(U′′(w̃L + m̃)w̃2) <

0.

In order to study the effects on labour supply of wage uncertainty, we employ our usual trick and

write the wage rate as:

w̃ = w̄ + γε̃, (4.110)

with E(w̃) = w̄ (a constant), γ = 1 initially, and E(ε̃) = 0. Recall from the deterministic labour supply

model discussed in Chapter 2 that the slope of the uncompensated (Marshallian) labour supply curve is

ambiguous due to offsetting income and substitution effects. How does this work in a setting with risk?

An increase in the expected wage rate (holding constant γ = 1) changes labour supply according to:

∂L

∂w̄
=

E(U′(C̃)) + LE(w̃U′′(C̃))

− |∆2|
⋚ 0. (4.111)

The ambiguity arises because E(U′(C̃)) is positive whereas the sign of E(w̃U′′(C̃)) is ambiguous. With

positive prudence, however, U′′(C̃) is increasing in w̃, E(U′′(C̃)w̃) > 0, and the uncompensated labour

supply curve is an upward sloping function of the expected wage rate, ∂L/∂w̄ > 0.12

12It is not difficult to show that the compensated effect, keeping expected utility constant (by means of a change in non-labour
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Finally, an increase in γ (holding constant w̄) has the following effect on optimal labour supply:

∂L

∂γ
=

E(U′(C̃)ε̃)

− |∆2|
+

LE(w̃U′′(C̃)ε̃)

− |∆2|
⋚ 0. (4.112)

Block and Heineke (1973, p. 383) call the first and second term on the right-hand side of (4.112), respec-

tively, the uncertainty substitution effect and the income uncertainty effect. Although it is difficult to provide

a simple intuitive interpretation13 of the two effects, their respective signs can be determined. The un-

certainty substitution effect is negative because C̃ depends negatively on ε̃, so that, since U′′(C̃) < 0 it

follows that E(U′(C̃)ε̃) < 0. Under positive prudence, the income uncertainty effect is positive because

U′′(C̃) is increasing in ε̃, i.e. E(w̃U′′(C̃)ε̃) > 0. Hence, unlike the previous case of non-labour income

uncertainty, here the prudence property does not automatically imply a positive relationship between

labour supply and riskiness.

Inspired by Eaton and Rosen (1980a, pp. 367-368), we use the approach of Rothschild and Stiglitz

(1971, p. 67) in order to further investigate the conditions under which ∂L/∂γ is likely to be positive.

(This method is discussed in greater detail in the Intermezzo below.) First we define the following

function:

ΩL (L, ε̃) ≡ w̃U′(w̃L + m)− V′(L̄ − L), (4.113)

and we note that the first-order condition (4.108) can be written as E(ΩL (L, ε̃)) = 0. Note that ΩL (L, ε̃)

is monotonically decreasing in L. Rothschild and Stiglitz have shown that a mean-preserving spread

in wage income (of which an increase in γ is just a simple example), leads to an increase (decrease) in

labour supply if ΩL (L, ε̃) is convex (concave) in ε̃ (1971, p. 67). Using (4.113) and (4.110) we find the

partial derivatives of the ΩL (L, ε̃) function:

∂ΩL (L, ε̃)

∂ε̃
= γU′(w̃L + m) + γLw̃U′′(w̃L + m), (4.114)

∂2ΩL (L, ε̃)

∂ε̃2
= γ2L

[
2U′′(w̃L + m) + w̃LU′′′(w̃L + m)

]
. (4.115)

If ∂2ΩL (L, ε̃) /∂ε̃2
> 0 (< 0) over the entire domain of w̃, then ΩL (L, ε̃) is strictly convex (concave) and

∂L/∂γ > 0 (< 0).14 Using the index of absolute prudence (PA (z) ≡ −U′′′ (z) /U′′ (z)) in (4.115), it is

income m), is given by:

(
∂L

∂w̄

)

EΛ0

=
E(U′(C̃))

− |∆2|
> 0.

Menezes and Wang (2005) discuss how duality methods can be employed in the context of a model with wage rate uncertainty.
See also Menezes et al. (2005).

13Indeed, as was pointed out by Davis (1989, p. 135), the very concept of a pure substitution effect is ambiguous in the context of
an increase in risk. This is because there are different compensation methods that can be used, each giving different compensated
effects. See also Eaton and Rosen (1980a, p. 369), Dardanoni (1988, p. 438) and Menezes and Wang (2005) for attempts to
decompose income and substitution effects.

14If ΩL (L, ε) is neither convex nor concave, then the effect of an increase in risk is ambiguous. See Rothschild and Stiglitz (1971,
p. 67). Of course, for a given distribution for ε̃ and a specific utility function, the effect can be computed.
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thus possible to derive the following condition for the labour supply response:

∂L

∂γ
R 0 ⇔ w̃LPA(C̃) R 2. (4.116)

Eaton and Rosen (1980a, p. 368) derive a similar condition but state it in terms of the coefficient of

relative risk aversion, RR, which they assume to be constant. As (4.116) shows, however, the key deter-

minant in the condition is not so much the attitude toward risk (as captured by the curvature of U(C̃))

but rather prudence itself (i.e. the curvature of the marginal felicity function, U′(C̃)). If prudence is zero

or low, then the household reacts to increased wage risk by cutting back labour supply (dominant un-

certainty substitution effect). Conversely, if prudence is high enough (for example, because preferences

display DARA and the coefficient of absolute risk aversion is very high), then the income uncertainty

effect may dominate and labour supply may increase.

Eaton and Rosen (1980a) consider the effects of proportional labour income taxation on the optimal

supply of labour. With such a tax, the household budget constraint (4.101) is modified to:

C̃ = w̃ (1 − tL) L + m, (4.117)

where tL is the tax rate and we have assumed that other income is untaxed. By substituting (4.110) into

(4.117) we find:

C̃ = w̄∗L + γ∗ ε̃L + m, (4.118)

where w̄∗ ≡ (1 − tL) w̄ is the expected after-tax wage and γ∗ ≡ (1 − tL) γ is the tax-inclusive risk

parameter. An increase in the tax rate thus has two separate effects. On the one hand it reduces the

expected after-tax wage rate. This affects labour supply as in equation (4.111) above. On the other hand,

the tax increase also reduces the variability of the after-tax wage rate, i.e. the tax partially insures the

individual against wage fluctuations. This is of course the Domar-Musgrave result popping up in the

context of labour supply. The effects of a decrease in γ∗ are covered by equation (4.112) above. Not

surprisingly, since ∂L/∂w̄ and ∂L/∂γ are both ambiguous, the overall effect on labour supply of the tax

increase is ambiguous too.

Intermezzo 4.2

Economic effects of increased risk. In the text we use an intuitive approach to examine

the effects on optimal decision variables when riskiness increases. See, for example, the dis-

cussions surrounding equations (4.98), (4.106), and (4.112). Here we briefly discuss the more

formal approach of Rothschild and Stiglitz (1970, 1971) and Diamond and Stiglitz (1974). The
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agent has a control variable X and an objective function Ω (X, p̃) which depends on both X

and some stochastic variable p̃. To keep things simple, p̃ is written as follows:

p̃ ≡ p̄ + γε̃, (I.1)

where p̄ is a constant and ε̃ is a stochastic variable in the interval [εMIN, εMAX]. The density

function is f (ε̃) and the cumulative density function is F (y):

F (y) ≡
∫ y

εMIN

f (ε̃) dε̃. (I.2)

The expected value of ε̃ is assumed to be zero:

E(ε̃) ≡
∫ εMAX

εMIN

ε̃ f (ε̃) dε̃ = 0, (I.3)

so that it follows from (I.1) that E(p) = p̄. An increase in γ constitutes a mean-preserving

spread in p̃.

We write the expected value of the objective function as:

Ψ (X) ≡
∫ εMAX

εMIN

Ω (X, p̃) f (ε̃) dε̃, (I.4)

with p̃ given in (I.1) above. The agent chooses X in order to maximize Ψ (X). The first-order

condition is given by Ψ′ (X∗) = 0 or:

0 =
∫ εMAX

εMIN

ΩX (X∗, p̃) f (ε̃) dε̃, (I.5)

where ΩX ≡ ∂Ω (X, p̃) /∂X, and X∗ is the optimal choice for the control variable (which we

assume to be unique). The second-order condition for a maximum is that ΩXX (X, p̃) < 0 for

X = X∗. Assume that ΩXX (X, p̃) < 0 also holds in the neighbourhood of X∗. Rothschild

and Stiglitz (1971, p. 67) state the following results.

(P1) If ΩX (X∗, p̃) is a concave (convex) function of ε̃, i.e. ∂ΩX (X∗, p̃) /∂ε̃2
< 0 (> 0), then

an increase in riskiness will decrease (increase) X∗.

(P2) If ΩX (X∗, p̃) is neither convex nor concave function in ε̃, then the effect of an increase

in riskiness on X∗ is ambiguous.

In the text we have used (P1) in detail in the discussion surrounding equation (4.112),

where L is the control variable and p̃ is the wage rate. To determine the sign of the precau-

tionary savings effect in (4.98), we note that the control variable is now current consumption

(X = C1), and that the first-order condition (4.94) can be written as E (ΩX (X∗, p̃)) = 0,
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where p̃ = w̃2 the future wage rate, and ΩX (X∗, p̃) is defined as:

ΩX (X∗, p̃) ≡ U′ (X∗)−
1 + r

1 + ρ
U′( p̃L̄ + (w1 L̄ − X∗) (1 + r)). (I.6)

Concavity or convexity of ΩX (X∗, p̃) in p̃ clearly depends on the sign of U′′′ (·) as is argued

intuitively below (4.98). The discussion below equation (4.106) can be similarly understood

in terms of (P1).

****

4.3.3 Tax evasion

In an interesting application of the economic theory of decision making under risk, Allingham and

Sandmo (1972) study the issue of income tax evasion. Their paper makes use of insights from the eco-

nomics of crime, a field of study that was pioneered by Becker (1968). How much of its income will a

risk averse household declare for tax purposes if the tax authority is unable to perfectly monitor this

household’s income? On the one hand, by under-reporting its income, the household evades some taxes

it would otherwise have had to pay. This is the crime. On the other hand, the tax authority may find

out about the household’s undeclared income and levy a penalty exceeding the evaded tax. This is the

punishment.

Even though the household’s before-tax income is deterministic, the tax declaration decision is a

decision under risk because the probability of getting caught is less than one. To study the key trade-off

facing the household, consider the following simple model. The household’s actual before-tax income

is exogenously given and equal to W. The household declares an amount X to the tax agency and pays

a proportional tax, tY, on this declared income. With probability π the household is investigated by the

tax agency who will then observe W. If W exceeds X then the household pays tax on the undeclared part

of income, W − X (≥ 0), at the penalty rate tP, which exceeds tY.15 With probability 1− π the household

is not investigated (and thus gets way with the crime). Consumption of the household is thus stochastic

and given by:

C̃ =







CL ≡ W − tYX − tP (W − X) with probability π

CH ≡ W − tYX with probability 1 − π

. (4.119)

15If the household reports too much income (W − X < 0), then it receives a rebate at the statutory tax rate, tY , if it is monitored
by the tax authority.
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Figure 4.8: Income tax evasion and the penalty rate

The household is risk averse and chooses its control variable, X, in order to maximize its expected utility:

E(U(C̃)) ≡ πU(CL) + (1 − π)U(CH), (4.120)

where U′ (·) > 0 > U′′ (·). The first-order condition for an internal solution to the maximization prob-

lem is given by:

dE(U(C̃))

dX
= πU′(CL)

dCL

dX
+ (1 − π)U′(CH)

dCH

dX

= πU′(CL) (tP − tY)− (1 − π)U′(CH)tY = 0. (4.121)

At the optimum, the following second-order condition should also be satisfied:

d2E(U(C̃))

dX2
≡ |∆3| = π (tP − tY)

2 U′′(CL) + (1 − π) t2
YU′′(CH) < 0, (4.122)

where the sign follows from the fact that U′′(·) < 0.

The optimal choice for X can be illustrated with the aid of Figure 4.8. Consumption in the two states

is measured on the two axes and the budget line is given by SR0. The perfectly safe point S is attained if

the household declares its total pre-tax income (X = W). Regardless of whether it will be monitored, it

will have a certain consumption level equal to after-tax income, (1 − tY)W. The perfectly risky point is

at point R0. At that point the household does not declare any income for tax purposes at all, i.e. X = 0

and consumption is either W if it is not monitored (with probability 1 − π) or (1 − tP)W if it is “caught

red-handed” (with probability π).
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By using equation (4.119), and eliminating X, the budget equation can be written as:

CL =
tP (1 − tY)W

tY
−

tP − tY

tY
CH . (4.123)

The slope of the budget line passing through points S and R0 is thus given by − (tP − tY) /tY. By using

(4.121) we find that the optimum occurs at point E0, where there is a tangency between an indifference

curve and the budget line SR0. At point E0 the following condition is satisfied:

1 − π

π

U′(W − tYX)

U′((1 − tP)W + (tP − tY) X)
=

tP − tY

tY
, (4.124)

where we have substituted the definitions of CL and CH from (4.119). We note for future reference that

the horizontal distance between point R0 and point E0 is equal to tYX.

The effect of the penalty rate on the optimal amount of declared income can be investigated by

differentiating the first-order condition (4.124) with respect to tP:

∂X

∂tP
=

π [U′(CL)− (W − X) (tP − tY)U′′(CL)]

− |∆3|
> 0. (4.125)

An increase in the penalty rate thus increases the amount of declared income, as one would expect. In

terms of Figure 4.8, the budget line rotates from SR0 to SR1 and there are both income and substitution

effects. As (4.125) shows, however, the total effect is unambiguous because the two effects change the

optimal X in the same direction. In Figure 4.8 we illustrate the Slutsky decomposition for the case

of CRRA preferences. After the tax increase, the new income expansion path is given by IEP1. The

substitution effect is the move from E0 to E′, whilst the income effect is the move from E′ to E1. Since,

for a given income tax rate, any horizontal move to the left represents an increase in X, it follows that

both effects work in the direction of increased declared income.

4.4 Punchlines

In this chapter we study household decision making under conditions of risk. Two main types of risk

are considered, namely capital risk and income risk. With capital risk the yield on an asset is unknown

in advance, though the household typically knows its stochastic distribution. With income risk, asset

yields are known but income itself is stochastic.

Faced with risky prospects, the household is assumed to possess a so-called von-Neumann-Morgenstern

(vNM) utility function which depends on the possible outcomes. Throughout the chapter we employ

the expected utility hypothesis, according to which the household acts in such a way as to maximize the

mathematical expectation of this vNM utility function, using the probabilities of different outcomes (or

states) for weighting purposes. Although the expected utility hypothesis is not without its detractors, it

remains the dominant hypothesis for the analysis of economic decision making under risk.
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In the first section of this chapter we study a simple two-period model in which there is no income

risk but the household must make an optimal decision concerning its investment portfolio in the pres-

ence of one risk-free asset and one risky (but potentially high-yield) asset. In addition to the portfolio

decision, the household must also make an intertemporal decision, i.e. the decision when and how much

to consume during its lifetime (savings decision). We use this capital risk model to study the effects of

interest income taxation. Depending on the details of the tax system, it is possible that risk taking in-

creases if the tax on interest income is increased! This is the famous Domar-Musgrave result. On the

one hand the government takes a share of the expected return but on the other hand (with perfect loss

offsets) it also shares in the risk of losses.

In the second section we abstract from the savings decision and zoom in on the pure portfolio deci-

sion. In doing so we are able to study in greater detail the various aspects of often-used functional forms

of the vNM utility function. Furthermore, by restricting the number of possible states to two, a simple

graphical apparatus can be used to visualize the results and to emphasize the similarity to the determin-

istic case. Throughout this chapter attention is restricted to the case of risk averse decision makers. Such

a decision maker prefers the certain outcome A over any risky prospect for which the mathematical

expectation is equal to A, i.e. to take on risk he demands a risk premium. Mathematically this means that

the risk averter’s vNM utility function is a concave function of the stochastic outcome. We discuss the

key features of the optimal portfolio decision for two often-used functional forms, namely the CRRA

and CARA forms, which differ in the way in which the degree of concavity of the vNM utility function

is modelled.

The third section of this chapter studies some extensions and applications which abstract from capital

risk and instead focus on various types of income risk. The first application augments the two-period

consumption-saving model (of the first section) by postulating the existence of a single asset carrying a

certain return and by assuming that future wage income is risky. In this context the households has two

motives for saving, namely a life-cycle motive (smoothing consumption over time) and a precautionary

motive (accounting for the riskiness of future income). The assumption of risk aversion is sufficient

to guarantee an operative life-cycle motive. In contrast, the strength of the precautionary motive is

regulated by so-called prudence, which measures the curvature of the marginal utility function. A prudent

household will react to increased riskiness by saving more.

Next we turn to the reaction of optimal labour supply when either non-labour income or the wage

rate itself is risky. Again the degree of prudence determines the reaction of the decision variable (labour

supply) to increased riskiness in either non-labour income or the wage rate. A prudent worker will react

to both types of risk increases by supplying more hours.

Finally, we conclude section three of this chapter by applying the expected utility theory to the

household’s decision concerning its income tax declaration. If the tax authority cannot monitor the

household’s income perfectly, the probability of being found out when cheating is less than unity and

the household faces a stochastic income unless it is so risk averse as to stick to the perfectly safe option
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of declaring its income truthfully. In the internal optimum, the moderately risk averse household takes

on some risk, and evades some of the taxes it would otherwise have to pay. The amount of the tax that

is thus evaded can, however, be reduced by the tax authority by increasing the penalty rate levied on

undeclared income that is discovered (with non-zero probability) upon auditing.

Further reading

General treatments of decision making under risk. There are several excellent books on the economics of

risk and uncertainty. See, for example, Hirshleifer and Riley (1992), Gollier (2001), and Eeckhoudt,

Gollier, and Schlesinger (2005). The first two are rather advanced whilst the third is very accessible.

Brief introductions to the expected utility hypothesis are Schmeidler and Wakker (1987) and Machina

(1987). Kreps (1988) is an advanced introduction to the theory of individual decision making both with

and without risk.

Two-period model with risk. Early papers using the two-period model with income and/or capital risk

are Leland (1968), Sandmo (1969, 1970, 1974b), Drèze and Modigliani (1972), and Ahsan (1976). Recent

contributions include Barsky, Mankiw, and Zeldes (1986), Kimball (1990), Elmendorf and Kimball (2000),

and Aura, Diamond, and Geanakoplos (2002). Block and Heineke (1975) model the joint saving-labour

supply decision.

Portfolio model. The key sources for the pure portfolio model are Markowitz (1952), Tobin (1958),

Arrow (1965, 1971b), Mossin (1968), Stiglitz (1969), and Sandmo (1974b, 1977). See also Atkinson and

Stiglitz (1980, lecture 4) and Sandmo (1985, pp. 293-299) for a further discussion of the portfolio ap-

proach. For an empirical study on the effects of income risk on the portfolio choice, see Guiso, Jappelli,

and Terlizzese (1996).

Labour supply and risk. Early papers on the labour supply decision under risk are Block and Heineke

(1973), Eaton and Rosen (1980a), Coyte (1986), Dardanoni (1988), and Bodie, Merton, and Samuelson

(1992). Recent papers include Hartwick (2000), and Menezes and Wang (2005). Kanbur (1981) models

the occupational choice as an example of risk taking (safe versus risky professions).

Human capital. Interesting papers on the household’s human capital investment decision under con-

ditions of risk are Levhari and Weiss (1974), Eaton and Rosen (1980b), Hamilton (1987), Judd (1998), and

Anderberg and Andersson (2003).

Tax evasion. A classic paper on the economics of crime is Becker (1968). Applications to the issue of

income tax evasion are by Allingham and Sandmo (1972), Yitzhaki (1974), and Baldry (1979). See also

the recent survey by Slemrod and Yitzhaki (2002).



Chapter 5

Taxation and the firm

The purpose of this chapter is to discuss the following topics:

• What are the main taxes that are typically levied on firms?

• How do taxes affect the behaviour of perfectly competitive firms in a static setting?

• How do the results change if one allows for imperfectly competitive firms?

• What are the main determinants of the cost of capital if the firm determines its financial structure

in an optimal forward-looking fashion?

• How do taxes affect the firm’s optimal dynamic plans when investment is subject to adjustment

costs and expectations are fulfilled (perfect foresight)?

5.1 A basic static model of firm behaviour

As is pointed out by Atkinson and Stiglitz (1980, pp. 129-130), a large number of different taxes (may) af-

fect the firm.1 Such taxes may be specific or ad valorem. A first group of taxes are those levied on factors

of production. Examples include the payroll tax, where the tax base is the wage bill, and the corporate

profits tax, which can be seen as a tax on the return on capital. In recent years, taxes on the use of en-

ergy have been imposed to induce firms to engage in cleaner (more fuel-efficient) production methods.

Negative taxes (or subsidies) are also observed in many countries. Examples are wage subsidies, e.g. on

unskilled labour, and the investment tax credit which is a kind of subsidy on capital accumulation by

firms.

A second group of taxes affecting the firm are those levied on output. Examples are the value-added

tax and the production tax. As we shall see in this chapter, a third group of taxes that may affect the firm

1We define the firm in the traditional way as a profit maximizing agent facing a known technology and operating subject to
a well-defined market constraint. See Archibald (1987) for a discussion of alternative concepts. See also Roberts (2004) for a
discussion of modern theories of the firm.
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are actually taxes levied on households, e.g. the capital gains tax or the tax on dividend income. Such

taxes may affect the cost of capital the firm is faced with in the market!

In this section we develop some basic partial equilibrium models of firm behaviour in a static setting.

General equilibrium effects of firm taxation are studied in Chapter 6 below whilst some intertempo-

ral considerations are discussed in later sections of this chapter. In the first subsection we study the

behaviour of a representative perfectly competitive firm, focusing on factor substitution effects. In the

second subsection we study tax effects in simple models of monopoly and oligopolistic competition.

5.1.1 Perfect competition

In this subsection we study the behaviour of a representative perfectly competitive firm. The basic

assumptions that are employed in the model are the following. First, the firm produces a single homo-

geneous product under conditions of perfect competition on both its input markets and the market for

its output (price taking behaviour). Second, technology available to the firm features constant returns

to scale. Third, we abstract from adjustment costs and assume that all factors of production are freely

adjustable to the firm. (In Section 5.3 below we introduce adjustment costs of investment which renders

the firm’s capital stock a quasi-fixed factor of production.)

In order to develop a simple graphical apparatus we first study the case in which there are only

two factors of production, namely labour, L, and physical capital, K. Profit of the firm is defined as the

difference between revenue and total costs:

Π ≡ PF (K, L)− WL − RKK, (5.1)

where Π is profit, P is the goods price, F (·) is a linear homogeneous production function, W is the

wage rate, and RK is the rental rate on capital.2 The production function is strictly quasi-concave in its

arguments, features positive but diminishing returns to each production factor, and possesses isoquants

which bulge towards the origin. In technical terms, the properties are given by:

FL ≡ ∂F
∂L > 0, FK ≡ ∂F

∂K > 0,

FLL ≡ ∂2F
∂L2 < 0, FKK ≡ ∂2F

∂K2 < 0,

FKL = FLK ≡ ∂2F
∂L∂K > 0, FLLFKK − F2

KL > 0.

(5.2)

Note that in this particular case, with only two factors of production and constant returns to scale, capital

and labour must be cooperative factors of production, i.e. the marginal product of one factor increases as

the use of the other factor is increased.

The firm chooses its inputs of capital and labour in such a way that profit is maximized, taking as

given the available technology, the output price, and the input prices. The first-order necessary condi-

2It is straightforward to distinguish multiple types of capital or labour with associated wage and rental rates.
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tions are given by:

PFK (K, L) = RK, (5.3)

PFL (K, L) = W. (5.4)

For each factor of production, the value of the marginal product is equated to the rental rate. Of course,

with constant returns to scale, equations (5.3)-(5.4) do not pin down a unique profit maximizing output

level for the firm. For any output level, the firm will choose the capital-labour ratio such that (5.3)-(5.4)

hold. In terms of Figure 5.1, for a given output level Y0, the firm chooses its input mix such that the

marginal rate of technical substitution between the two factors (i.e. FL/FK) is equated to the relative

price of those two factors (i.e. W/RK). This occurs at point A.

An equivalent way to describe the firm’s behaviour recognizes the fact that a profit maximizing firm

must necessarily produce in a cost-minimizing fashion. To elaborate on this result, we write profit in the

following fashion:

Π = PY − c
(

W, RK
)

Y, (5.5)

where c
(
W, RK

)
is the unit cost function, i.e. c

(
W, RK

)
≡ min WL + RKK subject to F (K, L) = 1, and

c
(
W, RK

)
Y is total cost. The conditional input demand functions are obtained by using Shephard’s Lemma

(see Intermezzo 5.1):

K =
∂c
(
W, RK

)

∂RK
Y0, L =

∂c
(
W, RK

)

∂W
Y0. (5.6)

These conditional demands also describe point A in Figure 5.1.3

Intermezzo 5.1

The cost function. The cost function is yet another very useful tool from duality theory

which will be used time and again. The cost function is analogous to the expenditure function

discussed in the household model of Chapter 2. There is a single output, Y, which is pro-

duced by using n production factors. Factor Zi carries a rental rate of Wi (for i = 1, · · · , n).

Formally, the cost function represents the minimum level of factor costs needed to produce

a given level of output, say Y0, when faced with the rental rates Wi:

C (w, Y0) ≡ min
{Zi}

n

∑
i=1

WiZi subject to: F (Z1, · · · , Zn) = Y0,

3This can be seen by noting that the first-order conditions underlying cost minimization are W = λFL and RK = λFK , where λ
is the Lagrange multiplier for the production constraint. Combining the two conditions yields FL/FK = W/RK .
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where w ≡ (W1, · · · , Wn) is the vector of factor prices, Z ≡ (Z1, · · · , Zn) is the vector of

inputs, and F(Z) ≡ F (Z1, · · · , Zn) is the strictly quasi-concave production function.

The following key properties of the cost function can be established (McFadden, 1978,

pp. 47-48).

(P1) C (w, Y0) is homogeneous of degree one in rental rates (C (λw, Y0) = λC (w, Y0) for

λ > 0);

(P2) C (w, Y0) is concave in rental rates (C
(
λw0 + (1 − λ)w1, Y0

)
≥ λC

(
w0, Y0

)
+

(1 − λ)C
(
w1, Y0

)
for 0 ≤ λ ≤ 1);

(P3) C (w, Y0) is non-decreasing in w (if w1
> w0 then C

(
w1, Y0

)
> C

(
w0, Y0

)
);

(P4) C (w, Y0) is continuous in w;

(P5) If F (Z) features CRTS then the cost function is linear in Y0 and can be written as C (·) =

c (w)Y0 (where c (w) is unit-cost);

(P6) The Allen-Uzawa substitution elasticity between factors i and j is defined as:

σij ≡
C (·)Cij (·)

Ci (·)Cj (·)
, i 6= j, (I.1)

where Ci ≡ ∂C (·) /∂Wi and Cij ≡ ∂2C (·) /∂Wi∂Wj.

The conditional factor demand curves are given by Shephard’s Lemma:

Zi (w, Y0) =
∂C (w, Y0)

∂Wi
. (I.2)

Properties of the conditional factor demands are:

(P7) Zi (w, Y0) is decreasing in Wi, ∂Zi (w, Y0) /∂Wi = ∂2C (w, Y0) /∂W2
i < 0;

(P8) Cross-price effects are symmetric, ∂Zi (w, Y0) /∂Wj = ∂Zj (w, Y0) /∂Wi for all i, j; Inputs

i and j are substitutes (complements) if ∂Zi (w, Y0) /∂Wj > 0 (< 0);

(P9) Zi (w, Y0) is homogeneous of degree zero in rental rates (W1, · · · , Wn);

(P10) If F (Z) features constant returns to scale then, since C (·) = c (w)Y0, the conditional

factor demands simplify to:

Zi (w, Y0) =
∂c (w)

∂Wi
Y0. (I.3)

****

How do taxes affect the firm’s objective function and its first-order conditions? First consider the
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case of an ad valorem payroll tax, tP. Using the direct approach, profit is amended as follows:

Π ≡ PF (K, L)− W (1 + tP) L − RKK, (5.7)

and the first-order conditions (5.3)-(5.4) are changed to:

PFK (K, L) = RK, (5.8)

PFL (K, L) = W (1 + tP) . (5.9)

Holding constant output, an increase in the payroll tax induces a factor substitution effect, i.e. the firm

will want to adopt a higher capital-labour ratio. In terms of Figure 5.1, the relative rental rate on capital

(RK/W (1 + tP)) falls and the firm moves from point A to point B.

The same conclusion can also be derived by means of the dual approach. The payroll tax pushes up

the rental rate on labour, and it follows from the properties of the conditional factor demand functions

(5.6) that:

∂L

∂W
=

∂2c
(
W, RK

)

∂W2
Y0 < 0, (5.10)

∂K

∂W
=

∂2c
(
W, RK

)

∂RK∂W
Y0 = −

W

RK

∂2c
(
W, RK

)

∂W2
Y0 > 0, (5.11)

where we have made use of the fact that factor demand functions are homogeneous of degree zero in

input prices to arrive at the second expression in (5.11). In the two-factor case under consideration here,

we reach the rather unsurprising conclusion that the factors must be substitutes.

As a second example, consider an ad valorem output tax, tY. Profit (5.1) is now given by:

Π ≡ (1 + tY) PF (K, L)− WL − RKK, (5.12)

and the first-order conditions are modified to:

PFK (K, L) =
RK

1 + tY
, (5.13)

PFL (K, L) =
W

1 + tY
. (5.14)

In this case there is no factor substitution effect. The relative rental rate on capital is unchanged so

that, holding constant output, there is no effect on the capital labour ratio either. The output tax acts

as a common tax on both factors of production. The same conclusion follows from the input demand

functions (5.6) which are homogeneous of degree zero in the input prices.

The third example considers a specific subsidy on labour, sL, for which the profit expression and the
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Figure 5.1: Factor Substitution Effect

first-order conditions are modified to:

Π ≡ PF (K, L)− (W − sL) L − RKK, (5.15)

PFK (K, L) = RK, (5.16)

PFL (K, L) = W − sL. (5.17)

Two things are worth noting about this case. First, there is a factor substitution effect in the direction of

a lower capital-labour ratio (labour becomes cheaper vis-a-vis capital). Second, the specific subsidy is

equivalent to an ad valorem subsidy equal to s̄L ≡ sL/W (since W − sL equals (1 − s̄L)W in that case).

As a final example consider a tax on pure profit, tK, which changes the profit definition to:

Π ≡ (1 − tK)
[

PF (K, L)− WL − RKK
]

. (5.18)

Clearly, the first-order conditions for profit maximization are still as in (5.3)-(5.4), i.e. there is no factor

substitution effect. The relative rental rate on capital is unaffected so there is no effect on the capital-

labour ratio either. If all firms are exactly the same, then they all make zero (excess) profits, the term

in square brackets on the right-hand side of (5.18) is zero, and the tax raises no revenue at all. In the

alternative (and more realistic) case where firms are heterogeneous, some firms may make positive

profits whilst others may incur losses. In the long run, however, the loss-making firms will exit and the

marginal firm will be the one making exactly zero profits. By definition, the profit tax will not affect that

marginal firm at all. Hence, long-run output will not be affected under this scenario either. The profit



CHAPTER 5: TAXATION AND THE FIRM 129

tax falls on pure economic profit, i.e. on the “return on entrepreneurship”. As Atkinson and Stiglitz

(1980, p. 132) point out, however, the validity of this “Marshallian” view on the profit tax is critically

dependent on the definition of the tax base. Indeed, as is clear from (5.18), the tax base excludes the cost

of capital, RKK, and thus only applies to pure profits. In reality matters are much more complex—see

Sections 5.2 and 5.3 for a further study of the effects of corporate taxation.

How do changes in tax rates (or input prices) affect supply in a competitive market? We answer this

question for the symmetric case, in which all firms possess the same technology and thus face the same

cost function. Output of firm i is denoted by Yi and profit of firm i is given by:

Πi ≡
[

P − c
(

W (1 + tP) , RK
)]

Yi, (5.19)

where tP is the payroll tax (all other taxes are abstracted from) and c (·)Yi is total cost of firm i. Profit

maximization (dΠi/dYi = 0) yields the familiar condition equating price to marginal cost of production:

P = c
(

W∗, RK
)

, (5.20)

where W∗ ≡ W (1 + tP). Note that the scale of each firm is irrelevant in this constant-returns-to-scale

setting. Provided the firms act as perfect competitors, total output in the market can be produced either

by one very large firm or by many small firms. The supply curve is horizontal at the price level stated

in equation (5.20). Note furthermore, that all active firms will make zero excess profits under marginal

cost pricing.

Armed with equation (5.20) we can investigate how supply reacts to a change in the payroll tax:

∂P

∂tP
=

∂c

∂tP
=

∂c
(
W∗, RK

)

∂W∗

∂W∗

∂tP
=

WLi

Yi
> 0, (5.21)

where we have used Shephard’s Lemma in the final step. An increase in the payroll tax raises the cost of

labour to producers and increases the marginal cost of production. As a result, the competitive supply

curve is shifted up, more so the larger is Li/Yi, i.e. the more important labour is in the production

process.

5.1.2 Imperfect competition

At the end of the previous subsection we demonstrated that in a competitive setting, any cost increase

induces a one-for-one increase in the supply price of the commodity.4 In this subsection we show that

this result is no longer valid if the goods market is imperfectly competitive. Indeed, in such a setting,

cost changes typically lead to more than one-for-one price changes, i.e. price overshifting occurs. To

demonstrate this important phenomenon we consider two cases of imperfectly competitive behaviour,

4The general equilibrium repercussions of cost changes in a competitive model are studied in Chapter 6 below.
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namely the monopoly case, in which there is a single supplier in the market, and the oligopoly case, in

which there are a number of firms in the market reacting strategically to each other’s output decisions.

We continue to assume that factor prices are exogenous, i.e. the models are partial equilibrium in nature.

To facilitate comparison with the competitive case we focus attention on the effects of a payroll tax.

5.1.2.1 Monopoly

Assume that firm i is the monopolistic producer of the good. Profit of firm i is given by:

Πi ≡ P (Yi)Yi − c
(

W∗, RK
)

Yi, (5.22)

where Pi = P (Yi) is the inverse demand function for the good and Pi is the price set by firm i. The

demand curve is downward sloping, P′ (Yi) < 0, and the demand elasticity is greater than unity in

absolute value:

ε (Yi) ≡

∣
∣
∣
∣

∂Yi

∂Pi

Pi

Yi

∣
∣
∣
∣
=

∣
∣
∣
∣

P (Yi)

YiP′ (Yi)

∣
∣
∣
∣
> 1. (5.23)

Firm i chooses its output in order to maximize its profit. The first-order condition is given by:

dΠi

dYi
≡ P (Yi) + YiP

′ (Yi)− c
(

W∗, RK
)

= 0, (5.24)

whilst the second-order condition is:

d2Πi

dY2
i

≡ 2P′ (Yi) + YiP
′′ (Yi) < 0. (5.25)

By noting (5.23), it is easy to deduce that the profit maximizing output level induces an optimal price

which is equal to a markup times marginal cost of production:

Pi =
c
(
W∗, RK

)

1 − 1/ε (Yi)
. (5.26)

Since, the demand elasticity is greater than unity, it follows that the markup also exceeds unity (1/ [1 − 1/ε (Yi)] >

1), i.e. price exceeds marginal cost (Pi > c
(
W∗, RK

)
).

How does the monopolistic producer react to an increase in the payroll tax which leads to an increase

in marginal cost? By using (5.24) and applying the implicit function theorem we find that optimal output

decreases:

∂Yi

∂tP
=

1

2P′ (Yi) + YiP′′ (Yi)

∂c

∂tP
< 0, (5.27)

where the sign follows from the second-order condition for profit maximization given in (5.25) above.
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Figure 5.2: Overshifting of cost changes under monopoly

Since the demand curve facing the monopolist is downward sloping, the reduction in output leads to an

increase in the price, i.e. some price shifting occurs. Indeed, as was stressed by Seade (1985), overshifting

is quite likely to occur. Consider, for example, the case in which the demand elasticity is independent

of the output level, i.e. ε (Yi) = ε (a constant). In that case the price setting rule (5.26) reduces to

Pi = c/ (1 − 1/ε) so that:

∂Pi

∂tP
=

1

1 − 1/ε

∂c

∂tP
>

∂c

∂tP
, (5.28)

where the sign follows from the fact that ε > 1.

The overshifting result has been illustrated in Figure 5.2. Marginal cost is initially equal to c0 and the

profit maximizing quantity is set at that point where marginal cost equals marginal revenue, MRi. The

output level is Y0 and the corresponding price level is equal to P0; see point E0 on the demand curve

P (Yi). An increase in the payroll tax shifts the marginal cost curve to c1. The monopolist reduces output

to Y1 and changes the price to P1. As is apparent from the diagram, the increase in the price exceeds the

original increase in marginal cost.

For the general case, with a non-constant demand elasticity, overshifting is also a distinct possibility.

It follows from (5.24) that a change in marginal cost will change the monopolist’s output and price

according to:

dYi

dc
=

1

2P′ (Yi) + YiP′′ (Yi)
< 0, (5.29)
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dPi

dc
=

P′ (Yi)

2P′ (Yi) + YiP′′ (Yi)
≡ Si > 0, (5.30)

where Si is the shifting parameter. Since both the denominator and the numerator of (5.30) are negative it

follows that Si > 0. Price overshifting occurs if Si > 1 or:

Si > 1 ⇔ P′ (Yi) + YiP
′′ (Yi) > 0 ⇔ Ei ≡ −

YiP
′′ (Yi)

P′ (Yi)
> 1, (5.31)

where Ei is a measure, first suggested by Seade (1985, p. 12), representing the elasticity of the slope of

the inverse demand function. Provided this elasticity measure exceeds unity, price overshifting occurs.

Even though with price overshifting the price is increased by more than the cost change, it is impos-

sible for profit to increase as a result of the cost change, i.e. there is no profit overshifting in the monopoly

case. This result can be demonstrated by differentiating (5.22) with respect to c:

dΠi

dc
=
[

P (Yi) + YiP
′ (Yi)− c

(

W∗, RK
)] dYi

dc
− Yi = −Yi, (5.32)

where we have used the first-order condition (5.24) to arrive at the final expression. The cost increase

leads to a reduction in maximized profits. The intuition behind this result is provided by Seade (1985, p.

5). The monopolist could have imposed the higher cost on himself but chose not to do so. The fact that

he did not choose to do so, implies that it is optimal (i.e. profit maximizing) not to do so. Hence, profit

cannot increase as a result of cost changes.

5.1.2.2 Oligopoly

Both under perfect competition and under monopoly, it is impossible for cost changes to lead to higher

profits. This result is somewhat disturbing because, as was argued by Seade (1985), profit shifting does

seems to be a fact of life, i.e. it is not just a theoretical curiosity:

...casual-observation real-world examples seem to be easy to find, in taxation contexts or

otherwise, of apparently profitable cost increases. A notable case in point is the world oil

industry in the years 1973-4, when the operating profits (exclusive of stock-revaluation) of

the large multinational oil companies underwent marked increases, in the wake of the steep

increase in the price of their prime input, crude (Seade, 1985, p. 5).

Seade (1985) demonstrated that it is quite possible for cost increases to be profitable to each firm

under conditions of oligopoly. In the remainder of this subsection we study a simple symmetric version

of Seade’s conjectural variations oligopoly model and derive the conditions under which price over-

shifting and profit overshifting occur. We continue to assume that factor prices are exogenous, i.e. the

model describes a partial equilibrium. There is a fixed number (N) of identical firms each producing the
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homogeneous good. Profit of representative firm i is given by:

Πi ≡ P (Y)Yi − c
(

W∗, RK
)

Yi, (5.33)

where P (·) is the (downward sloping) inverse demand function which depends on total output of the

oligopolistic sector, Y:

Y ≡
N

∑
i=1

Yi. (5.34)

Firm i conjectures a relationship between aggregate output and its own production. Following Seade

(1980a, p. 480) we assume that this conjectured relationship takes the form of dY/dYi = η, where η is

the conjectural coefficient; a positive constant which is the same for all firms in the symmetric version of

the model. A natural upper bound for η is N, in which case all rival firms react by increasing output by

the same amount as firm i (i.e. dYj/dYi = 1 for all j 6= i).

Firm i chooses its output level in order to maximize profit (5.33) taking into account the conjectured

relationship dY/dYi = η. The first-order condition is given by:

dΠi

dYi
≡ P (Y) + ηYiP

′ (Y)− c
(

W∗, RK
)

= 0, (5.35)

and the second-order condition is:

d2Πi

dY2
i

≡ 2ηP′ (Y) + η2YiP
′′ (Y) < 0. (5.36)

In addition to these optimality conditions, Seade (1980b, p. 24) also derives so-called stability conditions

which ensure that, following a perturbation in one of the exogenous variables, the oligopolistic sector

will eventually settle down in a new symmetric equilibrium. For the symmetric model used in this

subsection, the key stability condition is given by:

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ) < 0. (5.37)

By assumption all firms are the same, so in the symmetric equilibrium Yi = Ȳ and Pi = P̄ (for all

i = 1, 2, · · · , N), aggregate output is equal to Y = NȲ, and the first-order condition (5.35) reduces to:

P (NȲ) + ηȲP′ (NȲ) = c
(

W∗, RK
)

. (5.38)
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Armed with the expression (5.38), we can investigate the issue of price overshifting in the symmetric

oligopoly equilibrium. By differentiating (5.38) with respect to c and Ȳ we find:

dȲ

dc
=

1

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)
< 0, (5.39)

where the sign follows from the stability condition (5.37). Just as in the monopoly case, output is reduced

so some price shifting takes place. To derive the extent of price shifting, we note that in the symmetric

equilibrium, Pi = P̄ = P (NȲ), so that the change in the symmetric price following a cost change is

given by:

dP̄

dc
=

NP′ (NȲ)

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)
≡ S̄ > 0, (5.40)

where S̄ is the shifting coefficient for the oligopoly model. It is not difficult to derive the following

condition for price overshifting from (5.40):

S̄ > 1 ⇔ P′ (NȲ) + NȲP′′ (NȲ) > 0 ⇔ Ē ≡ −
NȲP′′ (NȲ)

P′ (NȲ)
> 1, (5.41)

where Ē is again Seade’s measure for the elasticity of the slope of the inverse demand function. Com-

paring the expressions (5.39)-(5.41) to the corresponding ones for the monopoly model (i.e. equations

(5.29)-(5.31)) we find that the monopoly model is a special case of the oligopoly model with only one

firm and a conjectural coefficient of unity (N = η = 1).

Unlike for the monopoly case, profit overshifting is a distinct possibility in the symmetric oligopoly

model. In the symmetric equilibrium, profit of each firm is given by Π̄ ≡ P (NȲ) Ȳ − cȲ. By differenti-

ating this expression we obtain:

dΠ̄

dc
=
[
P (NȲ) + NȲP′ (NȲ)− c

] dȲ

dc
− Ȳ

=
(N − η) ȲP′ (NȲ)

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)
− Ȳ, (5.42)

where we have used (5.38) and (5.39) to arrive at the second line. Whereas the first term on the right-

hand side of (5.42) is zero for the monopoly case (with N = η = 1), it is positive for the oligopoly model

(recall that 0 < η < N). Hence, in principle the first term can offset the negative second term on the

right-hand side of (5.42), so that profit increases following a cost change.

By using the definition for Ē (given in (5.41) above), the expression in (5.42) can be simplified as

follows:

dΠ̄

dc
=

(N − η) ȲP′ (NȲ)− Ȳ [(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)]

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)

=
−ηȲ [2P′ (NȲ) + NȲP′′ (NȲ)]

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)
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=
ηȲP′ (NȲ)

(N + η) P′ (NȲ) + ηNȲP′′ (NȲ)
[Ē − 2] . (5.43)

In view of the stability condition (5.37) and the fact that demand slopes downward, it is obvious that the

fraction appearing on the right-hand side of (5.43) is positive. Hence, profit overshifting occurs in the

symmetric oligopoly model if and only if Ē > 2. To relate this condition to the elasticity of the demand

curve itself, consider the iso-elastic demand curve, Y = P−ε, for which Ē = 1 + 1/ε. Provided the

demand curve is inelastic (ε < 1), an increase in cost must increase the profit level for each oligopolist

(Seade, 1985, p. 16).

The intuition behind the profit overshifting result is provided by Seade (1985, p. 5). If an individual

producer cuts back his production, then his profit will go down but the price set by all firms (and their

profits) will go up. Since the costs are borne by the individual producers and the benefits accrue to all

producers, too little “restraint” will be practiced, i.e. too much is produced by each firm.5 The cost

increase forces all firms to cut production and thus increases restraint. As Seade puts it, “the increase in

cost can be seen as imposing on the producers some of the collusion they themselves had been unable

to achieve.”

5.2 Financial structure of the firm

Useful as they are for organizational purposes, the basic static models discussed in the previous section

are somewhat unsatisfactory for at least two reasons. First, because the models are static, they cannot

be used to study the inherently dynamic capital accumulation decision of the firm (i.e. its real investment

plans). Second, such static models cannot say anything about the determination of the cost of capital

facing a given firm (i.e. the firm’s optimal financial policy). In this section we deal with the second of these

deficiencies by studying the determinants of the cost of capital facing the firm. (In Section 5.3 we jointly

study the firm’s investment and financial decisions.) To keep things as simple as possible, we restrict

attention to the case of a perfectly competitive firm. Central to our discussion is the classic deterministic

infinite-horizon model by Auerbach (1979).

The key issue studied by Auerbach concerns the question how a mature firm should finance a given

amount of investment. The representative firm is competitive, operates under perfect foresight, has

an infinite planning horizon, and cannot go bankrupt. It faces three modes of financing, namely sales

of common stock (share emissions), retention of earnings, and sales of corporate debt (single-period

corporate bonds).6

The model is formulated in discrete time, and the timing of payments is as follows. At the beginning

of each period firms distribute dividends to pre-existing shareholders, pay interest on corporate bonds,

5This is not unlike the public good problem studied in Chapter 12 below. See also Kurz (1985).
6In contrast, an immature (starting) firm may not have profits that are high enough to finance its investment projects and may

also face restrictions regarding its ability to incur corporate debt. See Sinn (1991, pp. 39-42) on the cost of capital facing immature
firms.
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repay principal on debt outstanding from the previous period, and sell new shares ex dividend.

The stylized tax system is as follows. All tax rates are assumed to be constant over time. The corpo-

rate tax levied on the firm is denoted by tK and by assumption interest payments on corporate debt are

deductible from taxable profit. The dividend tax and capital gains tax levied on the household-investors

are denoted by, respectively, tD and tG. It is assumed that capital gains are taxed upon accrual (not on

realization), and that dividends are taxed more heavily, i.e. tD > tG.

Household-investors all face the same personal tax rates tD and tG, have a one-period discount rate of

ρt, face an interest rate of rt, and, like firms, are blessed with perfect foresight. Below we shall normalize

the number of household-investors to unity and refer to the representative household where needed.

5.2.1 The firm

The ex-dividend value of the representative firm’s equity at the beginning of time t is denoted by Vt:

Vt = VO
t + VN

t , (5.44)

where VO
t is the ex-dividend value of pre-existing shares at the beginning of time t and VN

t is the ex-

dividend value of new shares sold at the beginning of time t. Pre-existing equity may be diluted by new

emissions (see below) and the dilution parameter is defined as follows:

δt ≡
VN

t

Vt
. (5.45)

The stock of corporate debt outstanding at the beginning of period t is Bt and the firm’s leverage is thus

represented by:

βt ≡
Bt

Bt + Vt
. (5.46)

Dividends, Dt, paid at the end of period t (i.e. at beginning of period t + 1) are defined as follows:

Dt = xt+1 + Bt+1 + VN
t+1 − [1 + rt (1 − tK)] Bt, (5.47)

where dividends must be non-negative (by definition), and xt is the corporate cash flow of the firm at

the beginning of period t. This cash flow is net of the corporate tax but before account is taken of the net

sales of debt and equity, interest payments, and tax savings on interest payments.7

7Cash flow is thus given by xt ≡ (1 − tK)Π (Kt) − It, where It is investment spending, and Π (Kt) is gross operating profit
expressed as a function of the capital stock at the beginning of period t :

Π (Kt) ≡ max
{Lt}

F (Kt, Lt)− Wt Lt = FK (Kt, L∗
t )Kt,

where Wt is the wage rate and F (Kt, Lt) is the production function (featuring constant returns to scale). The second expression
results from the fact that the firm employs labour up to the point at which Wt = FL (Kt, L∗

t ), where L∗
t is the optimal amount of

labour used.
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It is assumed that the firm’s objective is to maximize the wealth of existing shareholders, employing

the following three instruments. First, it can choose an investment policy, i.e. a time path for cash flows,

which we denote by IX ≡ {xt, xt+1, xt+2 · · · }. Second, it can choose a debt policy, i.e. a time path for

corporate borrowing, which is denoted by IB ≡ {Bt, Bt+1, Bt+2 · · · }. Third, it can choose an equity policy,

i.e. a time path for equity emissions, which is denoted by IV ≡
{

VN
t , VN

t+1, VN
t+2 · · ·

}
. In view of (5.47),

once IX , IB, and IV are chosen, the path of dividends, ID ≡ {Dt−1, Dt, Dt+1 · · · }, is determined also.

It is assumed that the value of shares is equal to the present value of the net distributions received

by the owners (the no-bubble, fundamental equity value). The net distribution (received by the group of

share holders) at the end of period t is equal to:

Et ≡ (1 − tD) Dt − tG

(

VO
t+1 − Vt

)

, (5.48)

where tD is the dividend tax, (1 − tD) Dt is after-tax dividend payments, tG is the capital gains tax, and

VO
t+1 −Vt is the accrued capital gain (or loss, if this term is negative). (Recall that VO

t+1 is the ex-dividend

value of pre-existing shares at the beginning of time t + 1).

Consider two time periods t and s, where s > t. Clearly, if new equity is issued between times t and

s, then not all of Es will go to shares that were held as of period t. Some of these distributions will go

to shares that were issued between t and s. Define µs
t as the fraction of shares held during period s that

were in existence before the start of period t:

µs
t ≡

VO
t

Vt
×

VO
t+1

Vt+1
× · · ·

VO
s

Vs

= (1 − δt) (1 − δt+1) · · · (1 − δs) , (5.49)

where δt is defined in (5.45) above. Obviously, if no new shares are issued between t and s, there is no

dilution and µs
t = 1. The original shareholders receive the distributions. In all other cases, the more

dilution there is, the smaller is the share of the “original” shareholders in the distributions.

Since the discount rate of equity owners in period s is ρs we find that the fundamental value of shares

owned at the beginning of period t is given by the discounted present value of receipts:

VO
t =

∞

∑
s=t

[
s

∏
z=t

1

1 + ρz

]

µs
t Es. (5.50)

According to (5.50), the “original” shareholders receive µs
t Es (in period s), have a discount rate of ρz in

period z, and feature an infinite planning horizon. Using (5.44), (5.45), and (5.50), it is possible to derive

the following arbitrage-like equation for Vt (see Intermezzo 5.2):

ρt =
Et + VO

t+1 − Vt

Vt
. (5.51)
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Intuitively, the one-period holding yield on shares, equalling dividend plus capital gain over initial

value, must equal the required one-period discount rate of the household-investors.

Intermezzo 5.2

Deriving the arbitrage equation. The derivation of the arbitrage equation (5.51) is far from

straightforward. Two intermediate results are useful.

Result 1: Difference equation for VO
t :

VO
t =

1 − δt

1 + ρt

[

Et + VO
t+1

]

. (I.1)

Result 2: Relationship between VO
t and Vt:

1 + ρt

1 − δt
VO

t = (1 + ρt)Vt. (I.2)

By combining (I.1) and (I.2) we obtain (5.51). The proof of Result 2 is obvious: it follows

readily from (5.44) by using the definition of δt in (5.45). Result 1 is proved as follows. First,

by using (5.49)-(5.50) we can write VO
t as:

VO
t =

1 − δt

1 + ρt
Et +

1 − δt

1 + ρt

1 − δt+1

1 + ρt+1
Et+1 + · · · (I.3)

and VO
t+1 as:

VO
t+1 =

∞

∑
s=t+1

[
s

∏
z=t+1

1

1 + ρz

]

µs
t+1Es

=
1 − δt+1

1 + ρt+1
Et+1 +

1 − δt+1

1 + ρt+1

1 − δt+2

1 + ρt+2
Et+2 + · · ·

=
1 + ρt

1 − δt

[
1 − δt

1 + ρt

1 − δt+1

1 + ρt+1
Et+1 +

1 − δt

1 + ρt

1 − δt+1

1 + ρt+1

×
1 − δt+2

1 + ρt+2
Et+2 + · · ·

]

. (I.4)

But, in view of (I.3), the term in square brackets on the right-hand side of (I.4) can be written

as VO
t − 1−δt

1+ρt
Et so VO

t+1 itself can be written as:

VO
t+1 =

1 + ρt

1 − δt

[

VO
t −

1 − δt

1 + ρt
Et

]

=
1 + ρt

1 − δt
VO

t − Et, (I.4)

which is a slightly rewritten version of (I.1).
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****

By assumption the firm maximizes the wealth of existing stock holders at time t, which is defined as

follows:

ΩO
t ≡ VO

t + Et−1, (5.52)

where Et−1 is the net distribution of dividends at the end of period t − 1 (i.e. at the beginning of period

t). By using (5.44), (5.47), and (5.48) we find that (5.52) can be rewritten as follows:

ΩO
t = Ωt + ω0, (5.53)

where Ωt and ω0 are defined as follows:

Ωt ≡ (1 − tG)Vt − (tD − tG)VN
t + (1 − tD) [Bt + xt] , (5.54)

ω0 ≡ tGVt−1 − (1 − tD) [1 + rt−1 (1 − tK)] Bt−1. (5.55)

The key thing to note about ω0 is that it is predetermined at the beginning of period t and is thus

irrelevant for the maximization of ΩO
t (the past cannot be undone). The effective objective function of

the firm is thus given by (5.54).

5.2.2 Wealth maximization: no personal taxes

In order to develop the intuition behind the results to come, we first look at the case where all personal

taxes are zero, i.e. tG = tD = 0. The firm’s objective function (5.54) simplifies to:

Ωt = Vt + Bt + xt, (5.56)

and we find the standard result that the wealth maximizing firm maximizes the sum of the market value

of its securities (Vt + Bt) and its current cash flow (xt).

Furthermore, using (5.44), (5.48), and (5.51) it is now possible to derive the famous Modigliani-Miller

result (see Intermezzo 5.3):

Vt =
∞

∑
s=t

[
s

∏
z=t

1

1 + ρz

]
[

Ds − VN
s+1

]

. (5.57)

According to this expression, the particular source of equity funds used to finance a given investment

policy (IX) has no impact on the firm’s valuation. Once IX and IB are determined so is IV , since Ds −VN
s+1
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is (by definition) independent of VN .8 Put differently, a unit increase (decrease) in dividends financed

by a unit increase (decrease) in the value of new equity has no effect on Vt (which is independent of the

levels of Ds and VN
s+1).

Shareholder wealth can now be written as follows:

Ωt = xt +
∞

∑
s=t+1

[
s−1

∏
z=t

1

1 + θz

]

xs, (5.58)

where θz is the cost of capital in period z:

θz ≡ βzrz (1 − tK) + (1 − βz) ρz, (5.59)

and where βz is defined in (5.46) above. According to (5.58), shareholder wealth is equal to the present

value of after-corporate-tax cash flows, using the discount rate θz which is determined by the financial

policy of the firm. As (5.59) shows, the cost of capital in period t is a weighted average of the costs

associated with debt and equity holdings, with the weights being βt ≡ Bt/ (Bt + Vt) and 1 − βt ≡

Vt/ (Bt + Vt) (see (5.46) above). Note furthermore that the interest paid on corporate debt is deductible

from the corporate tax base so rz (1 − tK) is the net cost of debt to the firm.

In view of (5.58)-(5.59) it is now possible to say something about the optimal financial policy of the

firm, which amounts to the optimal choice of the leverage parameter βt. Clearly, since βt does not affect

the stream of cash flows (xt), the firm should choose βt in order to minimize the cost of capital, θt, by

finding the cheapest source of funding. Since equation (5.59) is linear in βt, it follows that there are three

cases:9

• If rt (1 − tK) > ρt, then debt is relatively expensive and it is optimal to choose βt = 0: finance by

equity alone;

• If rt (1 − tK) = ρt, then debt and equity are equally expensive and the firm is indifferent about its

choice of βt;

• If rt (1 − tK) < ρt, then debt is relatively cheap and it is optimal to choose βt = 1: finance by bonds

alone.

Once the optimal cost of capital has been determined, the firm makes its optimal real (production

and investment) plans in such a way as to maximize its stock market value (sequential decision making).

The cost of capital thus influences the firm’s real activities but not vice versa. The interaction between

the cost of capital and the output-investment plans is studied in more detail in Section 5.3 below.

8To see why this is the case, recall that:

Ds − VN
s+1 = xs+1 + Bs+1 − (1 + rs) Bs.

9In the special case with ρt = rt, bonds are preferred if there is a positive corporate tax (tK > 0) and the firm is indifferent about
its source of financing if the corporate tax is zero (tK = 0).
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Intermezzo 5.3

Derivations of equations (5.57) and (5.58)-(5.59). The derivation of (5.57) proceeds as fol-

lows. In the first step we use (5.44), (5.48) and (5.51) to get:

ρtVt = Dt − VN
t+1 + Vt+1 − Vt ⇔

(1 + ρt)Vt =
[

Dt − VN
t+1

]

+ Vt+1. (I.1)

By iterating (I.1) forward in time we obtain:

Vt =
Dt − VN

t+1

1 + ρt
+

Vt+1

1 + ρt

=
Dt − VN

t+1

1 + ρt
+

1

1 + ρt

[

Dt+1 − VN
t+2

1 + ρt+1
+

Vt+2

1 + ρt+1

]

=
∞

∑
s=t

[
s

∏
z=t

1

1 + ρz

]
[

Ds − VN
s+1

]

+ lim
T→∞

ΞV , (I.2)

where ΞV is:

ΞV ≡
T

∏
z=t

1

1 + ρz
VT+1. (I.3)

The so-called no-Ponzi game (NPG) condition rules out “chain letters” and amounts in this

context to the requirement:

lim
T→∞

ΞV = 0. (I.4)

By incorporating (I.4) into (I.2) we obtain (5.57).

The derivation of equations (5.58) and (5.59) proceeds as follows. First we use (I.1) and

add appropriate terms to both sides to obtain:

(1 + ρt)Vt + Bt [1 + rt (1 − tK)] = Vt+1 + Dt − VN
t+1 + Bt+1 − Bt+1

+ Bt [1 + rt (1 − tK)] . (I.5)

Next we note the definition of Dt from (5.47) and derive from (I.5):

(1 + ρt)Vt + Bt [1 + rt (1 − tK)] = Vt+1 + xt+1 + Bt+1. (I.6)
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The left-hand side of (I.6) can be rewritten as:

LHS ≡ (Bt + Vt)

(

(1 + ρt)
Vt

Bt + Vt
+

Bt

Bt + Vt
[1 + rt (1 − tK)]

)

= (Bt + Vt) ((1 + ρt) (1 − βt) + βt [1 + rt (1 − tK)])

= (Bt + Vt) (1 + ρt (1 − βt) + βtrt (1 − tK))

= (1 + θt) (Bt + Vt) , (I.7)

where in the last step use is made of (5.59). Hence, equation (I.6) can be written as:

Bt + Vt =
Bt+1 + Vt+1 + xt+1

1 + θt
. (I.8)

In view of (5.56) and (I.8) we obtain the difference equation for Ωt:

Ωt − xt =
Ωt+1

1 + θt
. (I.9)

Iterating (I.9) forward in time we find:

Ωt = xt +
Ωt+1

1 + θt

= xt +
1

1 + θt

[

xt+1 +
Ωt+2

1 + θt+1

]

= xt +
∞

∑
s=t+1

[
s−1

∏
z=t

1

1 + θz

]

xs + lim
T→∞

ΞW , (I.10)

where limT→∞ ΞW is again a term that goes to zero in the limit (provided the relevant NPG

condition is imposed):

lim
T→∞

ΞW ≡
T

∏
z=t

1

1 + θz
ΩT+1 = 0. (I.11)

Substituting (I.11) in (I.10) yields equation (5.58).

****

5.2.3 Wealth maximization: positive personal taxes

We now reinstate the personal tax system by allowing for non-zero tax rates on both capital gains (tG ≥

0) and on dividend income (tD > 0). In most countries capital gains are taxed at a lower rate than other

income is, i.e. the case that we focus on assumes that tG < tD. Recall that in the presence of personal
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taxation, the expression for stockholders wealth is given by equation (5.54) above. It is clear from that

expression that, if tD 6= tG, the firm should not strive to maximize the sum of current cash flow and

the market value of securities (Vt + Bt + xt). The “standard result” mentioned below equation (5.56) no

longer holds in the presence of differential taxation of dividends and capital gains.10 As was pointed

out by Edwards and Keen (1984, p. 212), however, both with and without personal taxes, maximization

of ΩO
t is equivalent to maximization of the opening market value of equity, Vt−1. To see why this is the

case, we use equation (5.51), lagged once, and note (5.52) to derive:

ΩO
t = (1 + ρt−1)Vt−1. (5.60)

Since ρt−1 is exogenous, and ρt−1Vt−1 is the post-tax return that share holders obtain over period t − 1,

maximizing Vt−1 is the same as maximizing ΩO
t .

By taking the steps leading to (5.57), it is possible to derive the following expression for the ex-

dividend value of the firm’s equity:

Vt =
∞

∑
s=t

[
s

∏
z=t

1

1 + ρz
1−tG

] [
1 − tD

1 − tG

(

Ds − VN
s+1

)

−
tD − tG

1 − tG
VN

s+1

]

. (5.61)

This expression generalizes (5.57) to the case of personal taxation. If tD = tG then the only thing that

differs between the two expressions (5.57) and (5.61) is the discount rate (which is higher in the taxation

case, i.e. ρz/ (1 − tG) > ρz). In the more relevant case, however, with tG < tD, the differential tax

treatment introduces an asymmetric effect of dividends and new share issues in the valuation formula.

Indeed, given IX and IB, a decrease in VN
s increases Vt (and hence Ωt). It is never optimal for the firm to

issue new shares and pay dividends at the same time, i.e. Vt may be increased by an equal reduction in

Ds and VN
s+1.11

Given the favourable tax treatment of capital gains, the firm may wish to repurchase its own shares

(provided dividends remain non-negative) and thus increase its market value. Although this argument

is theoretically correct, share repurchases do not occur very often in reality. The reason is clear: repur-

chases are very difficult in the United Kingdom (requires a court order) and are forbidden or made very

unattractive (by taxing capital gains as dividends) in the United States.

The tax capitalization view, developed by inter alia King (1974), Auerbach (1979), and Bradford (1981),

is based on the assumption that mature firms have sufficiently high after-tax profits and therefore use

retained earnings (withheld dividends) as the marginal source of investment funds. According to this

view, the firm has exhausted all its low-tax opportunities to channel income to its shareholders and thus

10Obviously, if tD = tG then maximization of Vt + Bt + xt is still called for. This case represents the integration of corporate and
personal income taxes, i.e. the same tax rate is applied to retained and distributed corporate income.

11As is pointed out by Poterba and Summers, however, there exists a dividend puzzle in that in reality some firms pay dividends
despite the fact that they have “unused opportunities to repurchase shares or engage in equivalent transactions which would
effectively transmit tax-free income to shareholders” (1985, p. 234). According to the theory proposed here, this constitutes
suboptimal behaviour on the part of the firm.
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faces the following binding constraint:

VN
s = 0 for all s. (5.62)

Dividends are strictly positive and equation (5.61) simplifies to:

Vt =
∞

∑
s=t

[
s

∏
z=t

1

1 + ρz
1−tG

]

1 − tD

1 − tG
Ds. (5.63)

Following the steps leading to (5.58) we find that shareholder wealth in the presence of personal taxation

can be written as follows:

Ωt = (1 − tD)

(

xt +
∞

∑
s=t+1

[
s−1

∏
z=t

1

1 + θz

]

xs

)

, (5.64)

where θz is the redefined cost of capital in period z:

θz ≡
βzrz (1 − tK) (1 − tD) + (1 − βz) ρz

(1 − tG)− (tD − tG) βz
. (5.65)

In equation (5.64), the term in round brackets on the right-hand side is the present value of after-

corporate-tax cash flows using the discount rate determined by the firm’s optimal financial policy. Share-

holder wealth is the after-dividend-tax equivalent of this present value term.

It is clear from equation (5.65) that the cost of capital in period t depends on the leverage parameter,

βt, and on the tax rates tK and tG, but not on the dividend payout rate or the tax on dividends, tD. In

order to understand this result it is useful to consider some special cases. First, a solely debt-financed

firm sets βt = 1 so that the cost of capital reduces to the net of tax rate of interest, θt = rt (1 − tK).

Second, a solely equity-financed firm sets βt = 0 so that θt =
ρt

1−tG
, again no effect effect of the dividend

tax rate on the cost of capital.

As before, the firm’s optimal financial policy consists of choosing the appropriate leverage, βt. By

using (5.65) (for period t) and differentiating with respect to βt we find:

dθt

dβt
=

(1 − tD) [rt (1 − tK) (1 − tG)− ρt]

[(1 − tG)− (tD − tG) βt]
2

. (5.66)

It follows from (5.66) that there are three cases to be considered:

• If rt (1 − tK) (1 − tG) > ρt then dθt/dβt > 0 and it is optimal to choose βt = 0: finance by equity

alone;

• If rt (1 − tK) (1 − tG) = ρt then dθt/dβt = 0 and the firm is indifferent about its choice of βt; and

• If rt (1 − tK) (1 − tG) < ρt then dθt/dβt < 0 so it is optimal to choose βt = 1: finance by bonds

alone.
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Imposing these three possible outcomes in (5.65), we reach the conclusion that the optimized cost of

capital is independent of the dividend tax altogether, i.e. θt becomes:

θt ≡ min

[
ρt

1 − tG
, rt (1 − tK)

]

. (5.67)

Whilst the dividend tax does not influence the cost of capital, it does affect the value of shareholder

wealth, Ωt. Indeed, as is clear from the expression in (5.64), the dividend tax acts as a lump-sum levy

on wealth in the corporate sector. According to the tax capitalization view, current equity is trapped in

the corporate sector and as a result bears the burden of the dividend tax (Poterba and Summer, 1985, p.

239).

Will corporate debt and equity ever be held simultaneously in the market? Clearly, this is only

possible if both firms and household-investors are indifferent between the two instruments. It follows

from (5.66) that firms are indifferent if and only if rt (1 − tK) (1 − tG) = ρt. Household-investors receive

ρt from holding equity and rt (1 − tR) when holding corporate debt, where tR is the rate at which interest

income is taxed at the personal level (this rate may or may not equal the dividend tax rate). In the

absence of risk, household-investors are thus indifferent between debt and equity if and only if ρt =

rt (1 − tR). It follows from the two indifference relationships that simultaneous debt and equity holding

can be an equilibrium phenomenon if and only if (1 − tK) (1 − tG) = 1− tR. If (1 − tK) (1 − tG) > 1− tR

then there will only be equity whilst if (1 − tK) (1 − tG) < 1 − tR there will be only debt.12

The key findings of this subsection are as follows. First, the tax system generally affects the validity of

the Modigliani-Miller Theorem. Second, the corporation tax favours bond financing because it reduces

the interest rate on corporate bonds. Third, the cost of capital is independent of the dividend tax and

of the dividend payout ratio. Fourth, the firm engages in a kind of “sequential” decision making; via

its financial policy the firm determines the cost of capital, after which it decides on output and capital

accumulation plans.

5.3 Taxation and firm investment

In the previous section it has been demonstrated that the cost of capital to a firm depends very much on

the details of the firm’s financial policy, the corporate tax system, and the personal tax system. It follows

that the effect of taxes on the firm’s investment and output decisions is also critically dependent on these

details. We also noted in the previous section that in reality firms do tend to pay out dividends despite

their unfavorable tax treatment vis-a-vis capital gains (the dividend puzzle).

The objective of this section is to study the effects of the different personal and corporate taxes on

the firm’s output and capital accumulation decisions. The argument makes use of a (simplified version

of the) model of firm investment due to Turnovsky (1990). The model is based on explicitly dynamic

12The proof proceeds as follows. Assume that investors are indifferent between debt and equity so that ρt = rt (1 − tR). If
(1 − tK) (1 − tG) > 1 − tR it follows that (1 − tK) (1 − tG) > ρt/rt or (1 − tK) (1 − tG) rt > ρt so firms will want equity.
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maximizing behaviour of household-investors and firms. The optimization programs yield explicit ex-

pressions for the arbitrage equations and the cost of capital under different dividend policies. In contrast

with Turnovsky (1990), our analysis restricts attention to the partial equilibrium effects of tax policy on

the representative firm.13 For reasons of analytical convenience and in order to prepare for the analysis

in Chapter 7 below, we cast the model in continuous (rather than discrete) time.

5.3.1 Representative household

There are many infinitely-lived identical household-investors who are blessed with perfect foresight.

For notational convenience, we normalize the number of households to unity and argue on the basis of

a single representative household. The lifetime utility function of the representative household is:

Λ (0) ≡
∫ ∞

0
U (C (t)) e−ρtdt, (5.68)

where U (·) is the felicity (or instantaneous utility) function, featuring positive but diminishing marginal

instantaneous utility (U′ (·) > 0 > U′′ (·)), C (t) is the flow of consumption, ρ is the pure rate of time

preference (ρ > 0), and Λ (0) is an indicator for lifetime utility from the perspective of the planning time,

t = 0.

The household can save by investing in shares or in government bonds (by assumption there are no

corporate bonds). In this deterministic setting, there is no risk so bonds and shares are perfect substitutes

in the household’s portfolio. The household budget identity is given by:

Ḃ (t) + PE (t) Ė (t) + C (t) = (1 − tY) [W (t) L̄ + D (t)] + (1 − tR) r (t) B (t)

− tG ṖE (t) E (t) + Z (t) , (5.69)

where B (t) is the stock of government debt, PE (t) is the price of shares, E (t) is the outstanding stock

of equities, tY is the common tax on wage income and dividend income, W (t) is the wage rate, L̄ is

(exogenous) labour supply, D (t) is dividends received from firms, tR is the tax on interest income, r (t)

is the interest rate on government bonds, tG is the capital gains tax, and Z (t) is the lump-sum transfer

received from the government. As usual a variable with a dot is that variable’s time rate of change, e.g.

Ḃ (t) ≡ dB (t) /dt.

Normalizing the planning period by t = 0, the household faces the initial conditions: E(0) = E0 and

B (0) = B0, i.e. the initial stocks of bonds and equity are predetermined at time t = 0. The household

chooses paths for C (t), B (t), and E (t) in order to maximize (5.68) subject to (5.69) and two transversality

conditions. The dividend payout ratio, rD (t), is defined as follows:

rD (t) ≡
D (t)

PE (t) E (t)
. (5.70)

13We return to a general equilibrium version of the model in Chapter 7.
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This ratio is determined by the firm and taken parametrically by the household. The household opti-

mization program constitutes a non-standard optimal control problem which can, however, be solved

by transforming it (see Intermezzo 5.4 below).14

The first-order necessary conditions characterizing the household’s interior optimum are:

U′ (C (t)) = λ (t) , (5.71)

(1 − tR) r (t) = (1 − tG)
ṖE (t)

PE (t)
+ rD (t) (1 − tY) , (5.72)

λ̇ (t)

λ (t)
= ρ − (1 − tR) r (t) , (5.73)

where λ (t) is the co-state variable associated with aggregate financial wealth. Intuitively, λ (t) measures

the increase in lifetime utility that the household would experience if a Martian visitor to earth were to

provide it with a little bit of additional wealth in period t.15 Equation (5.71) is the (implicit) Frisch demand

for consumption, (5.72) is the no-arbitrage equation between government bonds and equities, and (5.73)

describes the optimal time path for the marginal utility of wealth, λ (t).

In the partial equilibrium interpretation of the model, we assume that λ̇ (t) = 0 so that Ċ (t) = 0

is constant and r (t) = ρ/ (1 − tR). Both consumption and the interest rate are time-invariant. The

arbitrage equation (5.72) simplifies to:

(1 − tY)
D (t)

PE (t) E (t)
+ (1 − tG)

ṖE (t)

PE (t)
= ρ, (5.74)

where we have also used (5.70). Intuitively, (5.74) says that in the interior portfolio equilibrium, the

after-tax rate of return on shares (left-hand side) must equal the pure rate of time preference (right-hand

side). As usual, the rate of return on shares equals after-tax dividend plus capital gain per share divided

by the share price.

Intermezzo 5.4

Solving the household problem. All assets are perfect substitutes in the household portfolio

so that we can define total assets, A (t), as follows:

A (t) = B (t) + PE (t) E (t) . (I.1)

By differentiating both sides of (I.1) with respect to time we obtain:

Ȧ (t) = Ḃ (t) + PE (t) Ė (t) + ṖE (t) E (t) . (I.2)

14The basic tools of optimal control theory are summarized in the brief Technical Appendix to this chapter.
15The interested reader is referred to Léonard and Long (1992, pp. 153-155) for a formal proof of this result.
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Rewriting (5.69) we get (by adding ṖE (t) E (t) to both sides):

Ḃ (t) + PE (t) Ė (t) + ṖE (t) E (t) = (1 − tY) [W (t) L̄ + D (t)] + Z (t)− C (t)

+ (1 − tR) r (t) B (t) + (1 − tG) ṖE (t) E (t) , (I.3)

where it is noted that the left-hand side of (I.3) is equal to Ȧ (t). By adding and deducting

(1 − tR) r (t) PE (t) E (t) to the right-hand side of (I.3) we obtain:

Ȧ (t) = (1 − tY) [W (t) L̄ + D (t)] + (1 − tR) r (t) A (t) + Z (t)− C (t)

+
[
(1 − tG) ṖE (t)− (1 − tR) r (t) PE (t)

]
E (t) . (I.4)

Noting the relationship D (t) = rD (t) PE (t) E (t) we can rewrite (I.4) as:

Ȧ (t) = (1 − tR) r (t) A (t) + (1 − tY)W (t) L̄ + Z (t)− C (t)

+

[

(1 − tG)
ṖE (t)

PE (t)
+ rD (1 − tY)− (1 − tR) r (t)

]

PE (t) E (t) . (I.5)

We now have a single aggregate state variable (A (t)) whose dynamic evolution must be

determined.

Dropping time subscripts where no confusion can arise, the current-value Hamiltonian

can be written as:

H ≡ U (C) + λ

(

(1 − tR) rA + (1 − tY)WL̄ + Z − C

+

[

(1 − tG)
ṖE

PE
+ rD (1 − tY)− (1 − tR) r

]

PEE

)

+ µ [A − B − PEE] .

The control variables are C, E, and B, the state variable is A, the co-state variable is λ, and

the Lagrange multiplier is µ. The key first-order (Kuhn-Tucker) conditions are:

∂H

∂C
= U′ (C)− λ ≤ 0, C ≥ 0, C

∂H

∂C
= 0, (I.6)

∂H

∂E
= λPE

[

(1 − tG)
ṖE

PE
+ rD (1 − tY)− (1 − tR) r

]

− µPE ≤ 0,

E ≥ 0, E
∂H

∂E
= 0, (I.7)

∂H

∂B
= −µ ≤ 0, B ≥ 0, B

∂H

∂B
= 0, (I.8)

λ̇ − ρλ = −
∂H

∂A
= −λ (1 − tR) r − µ. (I.9)



CHAPTER 5: TAXATION AND THE FIRM 149

Assuming that consumption is essential (i.e. the marginal felicity of the first infinitesimal

amount of consumption is infinite, limC→0 U′ (C) = ∞) it follows that consumption will

always be strictly positive (C > 0). Hence, the first expression in (I.6) holds with equality, i.e.

U′ (C) = λ. If some government bonds are held by the household (B > 0), then it follows

from (I.8) that µ = 0. If some shares are also held (E > 0), then it follows from (I.72) that

(1 − tG)
ṖE
PE

+ rD (1 − tY)− (1 − tR) r = 0. Hence, in the interior solution, with both B > 0 and

E > 0, the expressions (I.6)-(I.9) simplify to (5.71)-(5.73).

****

5.3.2 Representative firm

There are many, perfectly competitive firms, using a constant returns to scale technology to produce

a single homogeneous good, Y (t). Just as with the households, we normalize the number of firms to

unity and argue on the basis of the representative firm. To keep the model as simple as possible, we

abstract from corporate debt (so that financing is by retained earnings or by new equities) and assume

that there is no depreciation of capital. To ensure that the firm has a well-defined capital accumulation

decision we postulate the existence of firm-level adjustment costs.16

Gross operating profit of the firm is denoted by Π (t) and defined as:

Π (t) ≡ F (K (t) , L (t))− W (t) L (t) , (5.75)

where K (t) is the physical capital stock (machines, buildings, cars, PCs, etcetera), L (t) is labour de-

mand, and F (·) is a constant returns to scale production function with the properties stated in equation

(5.2) above. Output is used as the numeraire commodity so the price of output has been set equal to

unity (P (t) = 1).

Corporate profit is taxed at rate tK and after-corporate-tax profit is either paid out to household-

investors in the form of dividends, D (t), or kept in the form of retained earnings, RE (t):

(1 − tK)Π (t) = D (t) + RE (t) . (5.76)

The capital accumulation identity abstracts from physical depreciation and is given by:

K̇ (t) = I (t) , (5.77)

16In the absence of adjustment costs, the firm would (unrealistically) be able to freely vary its stock of capital at any time.
With adjustment costs, the capital stock can only be changed gradually over time and a well-defined investment policy can be
formulated. Readers in need of a brief introduction to Tobin’s q theory of firm investment are referred to Heijdra and van der
Ploeg (2002, ch. 4). See also Summers (1981b) and Hayashi (1982).
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where I (t) is investment and K̇ (t) ≡ dK (t) /dt. The cost of investment including convex adjustment

costs equals:

φ

(
I (t)

K (t)

)

K (t) , (5.78)

where φ′ (·) > 0 and φ′′ (·) > 0. The intuition underlying (5.78) is as follows. First, for a given installed

capital stock, K (t), the costs of investment rise more than proportionally with investment, i.e. one large

investment is more costly to the firm than a sequence of small investments leading to the same change

in the capital stock. Second, for a given level of investment, the larger the firm is (in terms of its installed

capital stock), the less disruption cost per unit of capital it experiences. By a suitable choice of units we

can ensure that φ (0) = 0 and φ′ (0) = 1.17

In the absence of corporate bonds, the firm can finance its investment plans by retained earnings, or

by selling new equity, or both. The financing constraint of the firm is thus given by:

RE (t) + PE (t) Ė (t) = φ

(
I (t)

K (t)

)

K (t) . (5.79)

By combining (5.76) and (5.79) and assuming that RE (t) > 0 we obtain the following expression for

dividends:

D (t) = (1 − tK)Π (t)− φ

(
I (t)

K (t)

)

K (t) + PE (t) Ė (t) . (5.80)

The market value for outstanding shares is:

V (t) = PE (t) E (t) . (5.81)

Finally, by using (5.74), (5.80), and (5.81) we can derive the fundamental differential equation for the

value of shares:18

V̇ (t) =
ρ

1 − tG
V (t)−

[

(1 − tK)Π (t)− φ

(
I (t)

K (t)

)

K (t)

]

+
tY − tG

1 − tG
D (t) . (5.82)

Several things are worth noting about this expression. First, provided the dividend income tax differs

17An example of a φ (·) function for which these results hold is:

φ (·) =
I

K

(

1 + b
I

K

)

,

with b > 0.
18The derivation proceeds as follows. Differentiating (5.81) we get:

V̇ (t) = ṖE (t) E (t) + PE (t) Ė (t) .

The household no-arbitrage equation (5.74) can be rewritten as:

ρV (t) = (1 − tG) ṖE (t) E (t) + (1 − tY) D (t) .

By combining these expressions with (5.80) we obtain (5.82).
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from the capital gains tax (tY 6= tG) dividends matter to the determination of the value of the firm. If

dividends are in any way related to the value of the firm they will end up affecting the cost of capital (see

below). Second, as we saw in the previous section, provided tY > tG (the standard case) it is not optimal

for the firm to pay dividends. However, in reality firms do pay dividends, and for this reason Turnovsky

(1990, p. 497) formulates three alternative assumptions regarding dividend policy of the firm.

Under Rule 1, the firm offers its stock holders a fixed dividend yield by maintaining a constant

dividend payout ratio, rD. Dividend payments are thus given by:

D (t) = rDV (t) , (5.83)

where rD ≥ 0. Under Rule 2 it is assumed that the marginal source of financing is new equities only,

i.e. RE (t) = 0 in equation (5.79) above. Any remaining after-corporate-tax profits are distributed in the

form of dividends:

D (t) = (1 − tK)Π (t) . (5.84)

Finally, under Rule 3 the marginal source of financing consists of retained earnings only, i.e. PE (t) Ė (t) =

0 in equation (5.79) above, RE (t) = φ (I (t) /K (t)) K (t), and dividends are determined residually:

D (t) = (1 − tK)Π (t)− φ

(
I (t)

K (t)

)

K (t) (5.85)

By using the different dividend rules in (5.82) we obtain three alternative expressions for the funda-

mental differential equation of V (t). In the interest of brevity we restrict attention to rule 1. (The reader

is invited to investigate the consequences of rules 2 and 3.) For dividend rule 1 we obtain by substituting

(5.83) into (5.82):

V̇ (t) =
ρ + (tY − tG) rD

1 − tG
V (t)−

[

(1 − tK)Π (t)− φ

(
I (t)

K (t)

)

K (t)

]

. (5.86)

Clearly, since the coefficient for V (t) on the right-hand side is positive, equation (5.86) is an unstable

differential equation in V (t). The only economically sensible (no-bubble) solution is obtained by solving

this differential equation forward in time and imposing the following terminal condition:

lim
t→∞

V (t) exp

[

−
∫ t

0
θ (τ) dτ

]

= 0, (5.87)

where the cost of capital, θ (τ), is defined as:

θ (τ) ≡
ρ + (tY − tG) rD

1 − tG
. (5.88)

The terminal condition (5.87) ensures that the value of the firm remains finite. We thus focus on the
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fundamental value of the firm. In (5.88), the cost of capital depends on income and capital gains taxes and

on the payout yield rD. Note that if the firm pays no dividends, and sets rD = 0, then this expression

is the same as in (5.67) (simplified for the absence of corporate debt and recast in continuous time).

Provided rD, tY, and tG remain constant over the indefinite future, the cost of capital will be constant

also. For future purposes we denote this initial cost of capital level by θ∗.

The value of the firm at time t = 0 (the planning period) is given by:

V (0) =
∫ ∞

0

[

(1 − tK)Π (t)− φ

(
I (t)

K (t)

)

K (t)

]

exp

[

−
∫ t

0
θ (τ) dτ

]

. (5.89)

Equation (5.89) is the firm’s objective function under dividend rule 1. It is maximized by the appropriate

choice of K (t), I (t), and L (t) subject to the accumulation identity (5.77), the definition of gross operating

profit (5.75), and taking as given the initial capital stock, K (0).

The key first-order necessary conditions for an interior solution can be written as follows:19

W (t) = FL (K (t) , L (t)) , (5.90)

q (t) = φ′

(
I (t)

K (t)

)

, (5.91)

q̇ (t) = θ (t) q (t)− (1 − tK) FK (K (t) , L (t)) + φ

(
I (t)

K (t)

)

−
q (t) I (t)

K (t)
, (5.92)

where q (t) is Tobin’s q, representing the replacement value of installed capital. Equation (5.90) is a stan-

dard labour demand equation (taking the same form as (5.4) above), (5.91) relates optimal investment

demand to Tobin’s q and the installed stock of capital at time t, and (5.92) is the dynamic expression for

Tobin’s q.

Two further simplifications are incorporated. First, under the assumption of labour market clear-

ing, labour demand equals the exogenous supply, i.e. L (t) = L̄, and the marginal product of capital

becomes FK (K (t) , L̄) which is a downward sloping function of K (t) only (since FKK (K (t) , L̄) < 0).

(Of course, once K (t) is determined, the market clearing wage rate is determined residually through

equation (5.90).)

The second simplification is obtained by assuming a specific functional form for adjustment costs,

namely a quadratic specification, i.e. φ (z) = z (1 + bz/2) is chosen so that (5.91) and the optimized

19The optimization problem is solved with the method of optimal control (see the Technical Appendix to this chapter or Heijdra
and van der Ploeg (2002, pp. 700-702)). The current-value Hamiltonian is:

H ≡ (1 − tK) [F (K (t) , L (t))− W (t) L (t)]− φ

(
I (t)

K (t)

)

K (t) + q (t) I (t) ,

where K (t) is the state variable, q (t) is the co-state variable, and L (t) and I (t) are the control variables. The first-order conditions
are ∂H/∂L (t) = ∂H/∂I (t) = 0, q̇ (t)− θ (t) q (t) = −∂H/∂K (t), and K̇ (t) = ∂H/∂q (t). Upon simplifying we obtain (5.77) and
(5.90)-(5.92).
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value for φ (·) can be written as:

I (t)

K (t)
=

q (t)− 1

b
, (5.93)

φ

(
I (t)

K (t)

)

=
(q (t)− 1) (q (t) + 1)

2b
. (5.94)

Imposing all simplifications, the model can be reduced to two dynamic equations in K (t) and q (t):

K̇ (t) =

(
q (t)− 1

b

)

K (t) , (5.95)

q̇ (t) = θ (t) q (t)− (1 − tK) FK (K (t) , L̄)−
(q (t)− 1)2

2b
. (5.96)

The phase diagram of the model is shown in Figure 5.3. In that figure, the K̇ = 0 line implies a unique

value for Tobin’s q, denoted by q∗ = 1 (horizontal line). The dynamics of the capital stock is obtained

from (5.95):

∂K̇

∂q
=

K

b
> 0, (5.97)

i.e. for points above (below) the K̇ = 0 line, the capital stock increases (decreases) over time. This has

been indicated with horizontal arrows in Figure 5.3. The q̇ = 0 line is downward sloping in or near the

steady state (where q∗ ≈ 1):

(
dq

dK

)

q̇=0

=
b (1 − tK) (FKK)

∗

bθ∗ − (q∗ − 1)
< 0, (5.98)

where asterisks denote steady-state values. The dynamics of Tobin’s q is obtained from (5.96):

∂q̇

∂K
= − (1 − tK) FKK > 0. (5.99)

To the right (left) of the q̇ = 0 line, the capital stock is too high (low), the marginal product of capital

is too low (high), so part of the return on capital consists of capital gains (q̇ > 0) (capital losses, q̇ <

0) on installed capital. This has been indicated with vertical arrows in the figure. Given the arrow

configuration it is clear that there is a unique saddle-point stable equilibrium at point E0, where the

steady-state equilibrium values for q and K are equal to:

q∗ = 1, (5.100)

θ∗ = (1 − tK) FK (K∗, L̄) . (5.101)
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Figure 5.3: Phase diagram investment model

5.3.3 Tax policy

In this subsection it is demonstrated how the model can be used to conduct tax policy analysis at the

firm level. Various tax rates affect the investment system (5.95)-(5.96). It is clear from equation (5.88) that

the cost of capital under dividend rule 1 depends on the capital gains tax, tG, for sure, and also on the

dividend income tax, tY, provided the firm pays out some dividends (by setting rD > 0). In addition,

the corporate income tax, tK, affects the size of the after-tax marginal product of capital. In principle,

therefore, all these taxes will have an effect on the firm’s investment and output plans.

A quantitative local tax policy can be based on a linearized version of the model. Here we will,

however, focus on a qualitative analysis by deducing the effects by graphical means. We restrict attention

to the corporate tax rate. (The reader is invited to study the effects of the other tax rates under the

various dividend rules.) In a perfect foresight model the timing of the shock is of crucial importance.

Three time points are important to characterize a shock:

• Announcement time (TA): at what time does the shock become known to the relevant agent?

• Implementation time (TI): at what time will the shock actually occur?

• Ending time (TE): at what time will the shock be ended?

If the announcement time coincides with the implementation time (TA = TI) then we call the shock

unanticipated: the agent is taken by surprise and the shock occurs immediately. In contrast, if the an-

nouncement time predates the implementation time (TA < TI) then we call the shock anticipated: the

agent receives the news about a future shock but can brace himself partially for its effects. Finally, if the

ending time is infinite (TE → ∞), then we call the shock permanent, whereas the shock is called temporary

if the ending time is finite (TE ≪ ∞).
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Using this terminology, it is possible to consider four different cases, namely a shock which is (i)

permanent and unanticipated, (ii) permanent and anticipated, (iii) temporary and unanticipated, and

(iv) temporary and anticipated. In a perfect foresight world these shocks will have drastically different

effects.

Consider a permanent and unanticipated increase in the corporate tax rate (tK) that is announced and

implemented at time TA = TI = 0 and lasts forever (TE → ∞). In terms of Figure 5.4 the increase in tK

results in a downward shift of the q̇ = 0 line, say from (q̇ = 0)0 to (q̇ = 0)1. Formally, we obtain from

(5.96):

(
∂q

∂tK

)

q̇=0

= −
(FK)

∗

bθ∗ − (q∗ − 1)
< 0. (5.102)

Since the cost of capital is unaffected by the corporate tax rate (see (5.88) above), it follows from (5.100)-

(5.101) that the long-run effects on q and K are given by:

dq∗

dtK
= 0, (5.103)

dK∗

dtK
=

(FK)
∗

(1 − tK) (FKK)
∗ < 0. (5.104)

The long-run equilibrium shifts from E0 to E1 and the corporate tax reduces the capital stock in the

long run. Assuming that the firm is initially at the steady-state equilibrium point E0, the transitional

dynamics is as follows. At impact (t = 0) the capital stock is predetermined and, immediately following

the shock, the only stable trajectory to the new equilibrium is the saddle path, SP. Tobin’s q jumps down

at impact, from point E0 to point A directly below it. Intuitively, the firm realizes that the path of

the after-corporate-tax marginal product of capital, (1 − tK) FK (K (t) , L̄), is temporarily lower because

of the tax change. Since q (0) is the capitalized value of these after-tax marginal products from the

perspective of the impact period, it falls immediately at impact. At point A, Tobin’s q is lower than

unity so it follows from (5.93) that investment falls (becomes negative, in fact). As a result, the capital

stock gradually falls over time (K̇ (t) < 0). During transition the after-tax marginal product of capital,

(1 − tK) FK (K (t) , L̄), is gradually restored to its initial level.

A temporary and unanticipated increase in the corporate tax rate (tK) has vastly different effects. The

shock is announced and implemented at time TA = TI = 0 and will last until TE > 0. In order to deduce

the effects in a graphical setting we employ the following heuristic solution concept. We postulate that

the solution must satisfy the following criteria:

• If it occurs at all, a discrete adjustment in q must occur at the time the news becomes available

(i.e. at time TA), and there cannot be a further discrete adjustment in q after TA. Intuitively, an

anticipated jump in q would imply an infinite (shadow) capital gain or loss (since there would be

a finite change in q in an infinitesimal amount of time). Hence, the solution principle amounts
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Figure 5.4: Unanticipated and permanent incease in the corporate tax

to requiring that all jumps occur when something truly unexpected occurs (which is at time TA).

Obviously, at TA there is an infinite capital loss, but it is unanticipated.

• At time TA = 0 the capital stock is predetermined.

• While the shock is relevant (for TA ≤ t ≤ TE), the dynamics associated with the “new” situation

determines the motion of q (t) and K (t).

• At time t = TE, the (q, K) combination must be exactly on the saddle path leading back to the

initial equilibrium. Recall from the first requirement that q is not allowed to jump onto this saddle

path. It must arrive smoothly at exactly the right time.

Using the heuristic solution principle we can deduce the impact and transitional effects of the tempo-

rary tax change. In terms of Figure 5.5, the shock leads to shift in the q̇ = 0 line from (q̇ = 0)0 to (q̇ = 0)1

which lasts until time TE. The impact effect consists of a jump from E0 to point B. For TA < t < TE

the firm follows the trajectory from B to C and then from C to D. The relevant dynamic effects are those

implied by the “equilibrium” at point E′ and are indicated by the arrows. At t = TE, the shock is ended,

the q̇ = 0 line is shifted back from (q̇ = 0)1 to (q̇ = 0)0, and the firm is at point D which lies on the then

relevant saddle path, SP. For t > TE, the firm gradually moves along SP to the ultimate equilibrium at

E0. The temporary tax increase exerts a temporary effect on the capital stock.

Using the heuristic solution concept it is also possible to characterize the effects of anticipated per-

manent or temporary policies. This is left as an exercise for the reader. The key thing to remember about

this subsection is the crucial role of timing and expectations in determining the effects of policy changes.
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Figure 5.5: Unanticipated and temporary increase in the corporate tax

5.4 Empirical evidence

In an influential paper, Poterba and Summers (1985) use data for the United Kingdom to study the

effects of dividend taxation on security returns, dividend payout rates, and corporate investment. The

UK data are especially useful because there were various major dividend tax reforms during the sample

period, 1950-1983. They postulate three competing hypotheses. First, the Traditional View (or Old View),

according to which the dividend tax acts as an additional tax on corporate profits (over and above

the corporate tax). The early proponents of this “double taxation” view, such as Harberger (1962) and

McLure (1979), were criticized because they ignored the role of corporate financial policy. In contrast,

Poterba and Summers (1985, pp. 241-244) formulate an optimizing model in which it is advantageous

for the firm to pay dividends. In particular, they assume that the discount rate that is applied to the

firm’s income stream (e.g. ρz in equation (5.61) above) depends negatively on the dividend payout

ratio.

The second hypothesis is the Tax Capitalisation View (or New View) that was developed by King (1974),

Auerbach (1979b), and Bradford (1981). According to this view, the dividend tax does not affect the

cost of capital and thus does not affect anything real, including the marginal incentive to invest. The

dividend tax is essentially a lump-sum tax on initial holders of corporate capital. See also the discussion

surrounding equations (5.64)-(5.65) above.

Finally, the third hypothesis is the Tax Irrelevance View pioneered by Miller and Scholes (1978, 1982).

According to this view, dividend paying firms are not penalized in the market. This is because the

marginal investor does not effectively pay any taxes on dividends or capital gains (e.g. because they are

institutional investors, or because they use sophisticated tax strategies). As a result, the dividend tax

has no effect on the value of the firm or on its real investment decisions.
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Poterba and Summers (1985, p. 244) show that each of the three hypotheses produces a set of testable

predictions regarding the cost of capital, the equilibrium value of Tobin’s (marginal) q, and the respon-

siveness of investment and the dividend payout ratio to a permanent change in the dividend tax. These

predictions are then confronted with the data, which leads Poterba and Summers (1985) to the conclu-

sion that the traditional view is most consistent with British postwar data on security returns. As is

pointed out by Sinn (1991, p. 29) and Sørenson (1994, p. 436), this conclusion is somewhat troublesome

because the old view is based on the counterfactual assumption that new share issues are the marginal

source of equity finance. Indeed, Sinn cites evidence on US non-financial corporations suggesting that

internal financing accounts for about 68% of gross investment, debt financing for 31%, and new share

issues for only 1.2%.

5.5 Punchlines

In this chapter we study the effects of taxation on firm behaviour. We start out by formulating a basic

static model of firm behaviour under perfect competition. The competitive firm faces a constant returns

to scale technology, is a price taker on the markets for both its output and all its inputs, and produces a

homogeneous commodity by hiring factors of production in a cost minimizing fashion. Any tax which

affects the relative price of inputs will cause a factor substitution effect. When all production factors can

be varied at will, marginal cost depends only on tax-inclusive factor prices, the market supply curve

is horizontal, and any cost change is passed on to consumers on a one-for-one basis. This is the price

shifting phenomenon.

Next we assume that the firm operates under conditions of imperfect competition and investigate

whether price overshifting is possible, i.e. whether a cost change is shifted more than one-for-one to

consumers. In the standard monopoly case with a constant elasticity of demand, price overshifting must

occur! However, following an increase in marginal cost, the maximized profit level of the monopolist

must decrease, i.e. profit overshifting cannot occur in this case. The monopolist could have imposed the

higher cost on himself but did not choose to do so.

Matters are different in an oligopolistic setting. Using a homogeneous-good quantity-setting oligopoly

model with conjectural variations, it is shown that price overshifting occurs in the symmetric equilib-

rium provided the elasticity of the slope of the inverse demand function (i.e., Seade’s Ē) is sufficiently

high (Ē > 1). In contrast to the monopoly case, profit overshifting is also a distinct possibility in this

case—it occurs provided Ē > 2. If the industry demand features a constant elasticity, the requirements

for price overshifting and profit overshifting are both fulfilled if the demand curve is inelastic. Intu-

itively, the cost increase acts as an implicit collusion device prompting all firms to restrict output, thus

increasing their profit.

In the second section of this chapter we study the optimal financial decisions of a representative

perfectly competitive firm. An infinite-period dynamic model of a mature firm is formulated in discrete
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time. This firm operates under conditions of perfect foresight and is able to finance its real investment

plans by means of profit retentions, corporate debt issues, or share emissions. In the absence of personal

taxes on dividends and accrued capital gains, the Modigliani-Miller result is obtained which shows that

the particular source of equity funds used to finance a given investment policy has no impact on the

firm’s valuation. The cost of capital to the firm is the minimum of the after-corporate-tax interest rate on

corporate bonds and the discount rate of equity owners.

In reality, both dividend income and capital gains on shares are taxed. Typically, the tax on dividends

exceeds that on capital gains. In such a setting, it is never optimal for the firm to issue new shares and

pay dividends at the same time. The relatively mild tax treatment of capital gains makes it attractive

for the firm to repurchase its own shares, thus transmitting lightly taxed income to its shareholders.

According to the tax capitalization view, a firm which has exhausted all such low-tax income transmission

opportunities finances its investment plans by means of profit retentions. The cost of capital is then the

minimum of the after-corporate-tax interest rate on corporate bonds and the equity owners’ discount

factor corrected for the capital gains tax. Neither the dividend payout ratio nor the dividend income

tax affects the cost of capital. The dividend tax acts as a lump-sum tax on wealth in the corporate sector

(trapped equity).

In the third section of this chapter we study the interaction between the firm’s real and financial

decisions in a continuous-time perfect foresight model of the firm. The firm faces adjustment costs of

investment so that the value of installed capital may deviate from its replacement value in the market

(Tobin’s q theory). Depending on the assumptions regarding the firm’s dividend policy, expressions for

the cost of capital are obtained. A qualitative comparative dynamics exercise shows how tax changes

affect the firm’s investment plans, both at impact, during transition, and in the long run. Because the

economic agents are forward looking and blessed with perfect foresight, the timing of any tax change

critically determines its economic effects.

The chapter concludes with a brief discussion of the empirical evidence regarding the effects of divi-

dend taxation on security returns, dividend payout rates, and corporate investment. The evidence seems

to suggest that the tax capitalization view misses out on important aspects of reality. Although there are

many partial insights into how the theory of the firm’s financial decision making could be brought into

closer accordance with reality, no consensus model exists at this stage.

Further reading

Basic theory. Atkinson and Stiglitz (1980, lecture 5) cover much of the same topics as we do. In addition,

they also discuss additional issues such as the tax treatment of capital depreciation allowances and the

effects of inflation on the cost of capital. Good surveys on capital taxation, the firm’s financial policy,

and the cost of capital are Auerbach (1983, 2002), Sinn (1987, 1991), and Sørenson (1994).

Oligopoly. Key references to the oligopoly model are Seade (1980a, 1980b, 1985), Katz and Rosen
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(1985), Kurz (1985), Dixit (1986), Stern (1987b), and Hamilton (1999). Anderson et al. (2001) study tax

incidence in an oligopoly model with differentiated (rather than homogeneous) products. Good surveys

of the modern literature are Vives (1999) and Fullerton and Metcalf (2002, pp. 1823-1832). There is a large

empirical literature on price overshifting and/or profit overshifting. See, for example, Sumner (1981),

Bulow and Pfleiderer (1983), Sullivan (1985), Poterba (1996), Besley and Rosen (1999), and Feuerstein

(2002).

Tobin’s q theory. The interaction between the real and financial policies of the firm is typically stud-

ied in a setting with adjustment costs of investment. Prominent contributions are Auerbach (1979a,

1984), Poterba and Summers (1983), Hayashi (1985), Goulder and Summers (1989), Brock and Turnovsky

(1981), and Turnovsky (1990). Howitt and Sinn (1989) study gradual capital income tax reform in a

closed-economy general equilibrium model. See Hassett and Hubbard (2002) for a survey of the recent

theoretical and empirical literature on taxation and firm investment.

Firm behaviour under uncertainty. There is a large literature on firm behaviour under conditions of

risk. Prominent contributions are Sandmo (1971), Leland (1972), Ishii (1977), Batra and Ullah (1974),

Eeckhoudt and Hansen (1980), Eeckhoudt and Gollier (1995, ch. 11), Eldor and Zilcha (1990), and Zilcha

and Eldor (2004).

Duality and the cost function. A very accessible discussion of the cost function is presented by Jehle

and Reny (2001, ch. 3) and Varian (1992, p. 72). The restricted cost function, in which one or more of the

factors of production cannot be varied in the short-run, is explained by Chamber (1988, ch. 93). A very

advanced treatment of duality methods is McFadden (1978).
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Technical appendix on optimal control theory

In the text of this chapter we make use of the technique of optimal control. While a full treatment of

this technique is beyond the scope of the book, it is nevertheless useful to briefly discuss some of the

key results here. Our treatment is based on material taken from Heijdra and van der Ploeg (2002, pp.

700-702).

The proto-typical optimal control problem encountered in economics takes the following form. The

objective function is defined as:

y(0) =
∫ ∞

0
F (x(t), u(t), t) e−ρtdt, (A5.1)

where x(t) is the state variable, u(t) is the control variable, e−ρt is the discount factor, and t is time. The

state and control variable are related according to the following state equation:

ẋ(t) = f (x(t), u(t), t) . (A5.2)

The state equation thus describes the law of motion for the state variable. The initial condition for the

state variable is given by:

x(0) = x0, (A5.3)

where x0 is a given constant (e.g. the accumulated stock of some resource).

The objective is to find a time path for the control variable, u(t) for t ∈ [0, ∞), such that the objective

function (A5.1) is maximized given the state equation (A5.2) and the initial condition (A5.3). To solve

this problem one formulates a so-called Hamiltonian which takes the following form:

H ≡ F (x(t), u(t), t) e−ρt + λ(t) f (x(t), u(t), t) , (A5.4)

where λ(t) is the co-state variable which plays a role similar to the Lagrange multiplier encountered in

static optimization problems. The Maximum Principle furnishes the following conditions (for t ∈ [0, ∞)):

∂H

∂u(t)
= 0, (A5.5)

ẋ(t) =
∂H

∂λ(t)
, (A5.6)

λ̇(t) = −
∂H

∂x(t)
. (A5.7)

Equation (A5.5) says that the control variable should be chosen such that the Hamiltonian is maximized,

(A5.6) gives the equation of motion for the state variable, and (A5.7) gives the equation of motion for

the co-state variable.
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Current-value Hamiltonian

An equivalent way of solving the same problem is to work with the current-value Hamiltonian, which is

defined as follows:

HC

[
≡ Heρt

]
= F (x(t), u(t), t) + µ(t) f (x(t), u(t), t) , (A5.8)

where µ(t) ≡ λ(t)eρt is the redefined co-state variable. The first-order conditions expressed in terms of

the current-value Hamiltonian are:

∂HC

∂u(t)
= 0, (A5.9)

ẋ(t) =
∂HC

∂µ(t)
, (A5.10)

µ̇(t)− ρµ(t) = −
∂HC

∂x(t)
. (A5.11)

If there are n state variables and m controls then the same methods carry over except, of course,

that x(t) ≡ [x1(t), ..., xn(t)] and u(t) ≡ [u1(t), ..., um(t)] must be interpreted as vectors and the set of

conditions is suitable expanded:

∂HC

∂uj(t)
= 0, (A5.12)

ẋi(t) =
∂HC

∂µi(t)
, (A5.13)

µ̇i(t)− ρµi(t) = −
∂HC

∂x(t)
, (A5.14)

where λi(t) is the co-state variable corresponding to the state variable xi(t), j = 1, ..., m, and i = 1, ..., n.

(In)equality constraints

Recall the original problem (A5.1)-(A5.3). Suppose that there is an additional constraint in the form of:

g (x(t), u(t), t) ≤ c, (A5.15)

where c is some constant. Suppose furthermore that there is a non-negativity constraint on the control

variable, i.e. u(t) ≥ 0 is required. The way to deal with these inequalities is to form the following

current-value Lagrangian:

LC = F (x(t), u(t), t) + µ(t) f (x(t), u(t), t) + θ(t)
[
c − g (x(t), u(t), t)

]
, (A5.16)

where θ(t) is the Lagrange multiplier associated with the inequality constraint (A5.15).
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The first-order conditions are now:

∂LC

∂u(t)
≤ 0, u(t) ≥ 0, u(t)

∂LC

∂u(t)
= 0, (A5.17)

∂LC

∂θ(t)
≥ 0, θ(t) ≥ 0, θ(t)

∂LC

∂θ(t)
= 0, (A5.18)

ẋ(t) =
∂LC

∂µ(t)
, (A5.19)

µ̇(t)− ρµ(t) = −
∂LC

∂x(t)
. (A5.20)

Equation (A5.17) gives the Kuhn-Tucker conditions taking care of the non-negativity constraint on the

control variable, (A5.18) gives the Kuhn-Tucker conditions for the inequality constraint (A5.15), and

(A5.19) and (A5.20) give the laws of motion of, respectively, the state variable and the co-state variable.
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Chapter 6

Tax incidence in general equilibrium

The purpose of this chapter is to discuss the following topics:

• Why is a tax levied on agents situated on one side of the market in some cases ultimately borne

(entirely or partially) by agents on the other side of the market?

• How can we model tax incidence in a partial equilibrium setting and what are the main limitations

of this Marshallian approach?

• How does tax shifting occur in the prototypical two-factor-two-commodity general equilibrium

model, and what role is played by output effects and factor substitution effects?

• What are Applied General Equilibrium models and how can they be used for the analysis of drastic

tax policy changes?

• How robust is the standard two-factor-two-commodity model to deviations from its basic assump-

tions? In particular, what is the role of imperfectly competitive firm behaviour in the goods market

and of market frictions in the labour market?

6.1 Introduction

In the previous chapters we have studied the effects of various taxes on the behaviour of the differ-

ent market participants in isolation. For example, in Chapter 2 we studied how taxes levied on labour

income affect the labour supply decision of households whilst in Chapter 3 we discussed how the var-

ious tax rates affect consumption and saving. In each case attention was restricted to the behavioural

response by the agent upon whom the particular tax was actually levied, i.e. any market-induced reper-

cussions were ignored.1 In this chapter we move beyond the partial equilibrium approach and study

the topic of tax incidence in general equilibrium.

1In Chapter 5 interactions between households and firms have already been introduced. The analysis there remained partial
equilibrium in nature.
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The basic insight of tax incidence analysis is the notion that the agent upon whom the tax is levied

may not actually fully bear the tax, i.e. the tax may be shifted to other agents. Consider, for example,

the labour market. A labour income tax is levied on the household whose labour supply will generally

be affected as a result. The change in labour supply, following a change in the tax, may give rise to a

change in the wage rate which adversely affects the demanders of labour (i.e. the firms). Part of the

labour income tax may thus be borne by producers, even though they are not the ones upon whom the

tax is levied by the tax authorities.

As is pointed out by Atkinson and Stiglitz (1980, pp. 160-161) there are different types of tax in-

cidence analysis. Following a change in one or more taxes one could look at the effects on various

economic quantities. First, one could look at the incomes of producers, consumers, and the suppliers

of the production factors. Second, one could look at the functional income distribution by investigating

the effects on the payments to the main production factors (e.g. capital and labour). Third, one could

look at the personal income distribution. Fourth, one could take a spatial perspective and look at how

different regions in an economy are affected. Finally, one could investigate how different generations

are affected.

In this chapter we restrict attention to the first two types of tax incidence analysis. We study tax

effects in a neutral fashion, i.e. only one tax is changed at a time and tax revenue is recycled in a lump-sum

fashion to households. The reason for doing so is that it allows us to study the effect of that particular

tax change in isolation. An alternative approach would be to consider budgetarily neutral tax reform

packages, i.e. a change in one tax offset by a change in another tax in such a way that the government

budget constraint is satisfied. In such a tax reform experiment two taxes are changed at the same time

so that it is difficult to attribute the resulting effects on quantities and factor prices to each individual

tax in isolation. We briefly return to the issue of tax reform in Chapter 9 below.

6.2 Tax incidence in partial equilibrium

Although the classical economists were keen to argue on the basis of general equilibrium principles, tax

incidence analysis during the first half of the 20th century was dominated by the partial equilibrium

methods of Alfred Marshall (1920). In the Marshallian type of incidence analysis, markets are studied

in isolation, i.e. the interaction between demanders and suppliers on one market is taken into account

but the spill-overs that may exist with other markets are not.

To illustrate the strengths and weaknesses of the Marshallian partial equilibrium approach, consider

the following example taken from Atkinson and Stiglitz (1980, p. 162). There is a crop of some agri-

cultural product (say “grapes”) which is produced with the production factors land, K, and labour, L.

Land can only be used for growing this particular crop and its quantity is fixed, i.e. K = K̄. The supply

of land is thus perfectly inelastic. In contrast, the supply of labour is perfectly elastic at the given wage
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rate W. The linearly homogeneous production function is defined as:

Y = F (L, K̄) , (A5.1)

where Y is output and F (·) features a positive but diminishing marginal product of labour, i.e. FL (L, K̄) >

0 > FLL (L, K̄).2 The competitive demand for labour, LD, is obtained by equating the marginal product

of labour to the real wage rate, i.e. FL

(
LD, K̄

)
= W/P or:

LD = K̄l (W/P) , (A5.2)

where P is the producer price of the good and we have used the fact that FL is homogeneous of degree

zero in L and K̄. Obviously, the l (·) function features a negative derivative (l′ (·) < 0). By substituting

(A5.2) into (A5.1) we obtain the expression for the competitive supply curve:3

YS = K̄S (W/P) , (A5.3)

where SP ≡ ∂S/∂P = −FL (·)
2 K̄l′ (·) /P > 0.

The demand curve on the market for grapes is assumed to take the following form:

YD = D (PD, Z) , (A5.4)

where PD is the consumer price of the good and Z is a vector of other variables influencing demand

(such as the prices of other goods, income, etcetera). We assume that demand is downward sloping

(DP ≡ ∂D (·) /∂PD < 0).

In Figure 6.1 the situation on the grape market is illustrated. Initially there is no tax on grape con-

sumption so the producer price equals the consumer price, PD = P. The initial equilibrium is at E0, the

equilibrium price is P0, and the equilibrium quantity is Y0. It is easy to show that the rents received by

the land owners (Π0) is represented by the area BE0P0:

Π0 ≡ P0Y0 −
∫ Y0

0
MVC (Y, W, K̄) dY

= P0Y0 − [TVC (Y0, W, K̄)− TVC (0, W, K̄)]

= P0Y0 − TVC (Y0, W, K̄) , (A5.5)

2The production function is strictly quasi-concave and features the properties stated in equation (5.2) above.
3Consider, for example, the following Cobb-Douglas production function: F (·) ≡ ALεK̄1−ε (with 0 < ε < 1). For this case, l (·)

and S (·) are given, respectively, by l (W/P) ≡
(

W
εAP

)1/(ε−1)
and S (W/P) = A

(
W

εAP

)ε/(ε−1)
.
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Figure 6.1: Tax incidence in partial equilibrium

where TVC (·) and MVC (·) are, respectively, total and marginal variable cost of production:

TVC (Y, W, K̄) ≡ WF̄ (Y, K̄) , (A5.6)

MVC (Y, W, K̄) ≡
∂WF̄ (Y, K̄)

∂Y
, (A5.7)

and where L = F̄ (Y, K̄) represents the minimum amount of labour that is needed to produce output Y,

taking as given the available amount of land K̄. Hence, L is implicitly determined via the production

technology, Y = F (L, K̄).4

The introduction of a tax on the consumption of grapes (tG) increases the demand price to PD =

P + tG, shifts the demand curve downwards (to the dashed line), and shifts the market equilibrium

point to E1. As a result of the tax, the producer price falls from P0 to P1, the demand price rises from P0

to PD1, the wage remains unchanged by assumption, and landowner rents decline from BE0P0 to BE1P1.

It follows that the tax is borne by both consumers and landowners. The households used to pay P0 for

grapes and must now pay PD1. The producers used to get P0 for their grapes and now only receive P1.

4With only one variable production factor, the short-run variable cost function is thus obtained by inverting the short-run
production function. In the general case, there are n variable production factors, Li , with associated rental rates, Wt. The definition
for total variable cost is given by:

TVC (Y, W1, · · ·Wn, K̄) ≡ min
{Li}

n

∑
i=1

Wi Li subject to Y = F (K̄, L1, · · · , Ln) .

Of course, TVC (Y, W1, · · ·Wn, K̄) is increasing in Y. Furthermore, the constrained conditional input demand functions are ob-
tained by Shephard’s Lemma:

Li =
∂TVC (Y, W1, · · ·Wn, K̄)

∂Wi
.
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It is clear from the diagram that the division of the burden depends on the elasticities of demand and

supply. For example, if grapes were produced with land only, then supply would be perfectly inelastic

(vertical), and the tax would be borne by landowners only. Conversely, if grapes were produced with

labour only, then the supply curve would be perfectly elastic (horizontal), and the tax would be borne

by consumers only.

There are several limitations associated with the partial equilibrium approach. As the grape example

shows, the method is only valid under extreme assumption regarding the supply side, i.e. factor supplies

are either totally elastic (labour) or totally inelastic (land). In the more general case, both factors of

production may be used in other sectors of the economy so that the factor supply curves facing the

grape industry are a lot more complicated. Similarly, via the demand side a change in the demand for

grapes may affect the household’s demands for goods produced in other sectors, and this may affect

factor demands. In the partial equilibrium model, all factors other than the grape price are subsumed in

the term Z, which is treated as an exogenous variable. As we shall argue in the next section, the general

equilibrium approach to tax incidence analysis is much better suited to address these interactions across

markets and across supply and demand.

6.3 A simple general equilibrium model

In a classic paper, Harberger (1962) formulated a simple analytical general equilibrium model of an

economy with two production sectors and two factors of production. He used this “two-by-two” model

to study the effects of the corporate tax on sectoral outputs, factor employments, and factor rewards.

Subsequent major analytical contribution to this literature were made by Jones (1965, 1971a, 1971b).

The Harberger-Jones approach is important for at least two reasons. First, it has been used successfully

not only in the area of public economics but also in many other fields of economics, such as the pure

theory of international trade and two-sector growth theory (to mention just a few). Second, following

the advent of low-cost computing power, the Harberger-Jones approach has stimulated the construction

of multi-sector, multi-factor applied general equilibrium (AGE) models of the economy.

The objective of this section is to construct a basic two-sector-two-factor general equilibrium model

(without taxes) and to study its key properties. In order to facilitate the interpretation of the results, a

simple geometric illustration of the model is developed. In Section 6.4 we introduce taxes into the model

and study their effects.

6.3.1 A two-sector model

The basic static general equilibrium model has the following features. There are two sectors in the

economy. In each sector, technology features constant returns to scale, and firms are perfect competitors

in input and output markets. Outputs in the two sectors are denoted by X and Y, respectively, whilst
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prices are denoted by PX and PY, respectively. Both sectors use the two factors of production, capital

and labour. The amounts of capital and labour used in sector i are denoted by, respectively, Ki and Li

(where i = X, Y). The total supplies of capital and labour are fixed (at K̄ and L̄, respectively) and there is

full employment of both factors. In addition, there is perfect intersectoral mobility of factors implying

common rental rates, W and R, on labour and capital, respectively.

Following Atkinson and Stiglitz (1980, pp. 165-167) we develop the production side of the model

by making use of one of the modern tools of duality theory, namely the cost function (see Intermezzo

5.1 in the previous chapter). Recall that the cost function represents the minimum level of factor costs

needed to produce a given level of output when faced with given rental rates. Since technology features

constant returns to scale, and both factors can be adjusted freely, the cost functions in the two sectors are

linear in the respective outputs:

Cx ≡ cx (W, R) X, (A5.8)

Cy ≡ cy (W, R)Y, (A5.9)

where Ci and ci denote, respectively, total cost and unit cost in sector i. Since both factors are perfectly

mobile across sectors the same rental rates for capital and labour feature in (A5.8) and (A5.9).

Using Shephard’s Lemma, the conditional factor demands are obtained from (A5.8)-(A5.9):

LX =
∂cx (W, R)

∂W
X ≡ cx

W X, (A5.10)

KX =
∂cx (W, R)

∂R
X ≡ cx

RX, (A5.11)

LY =
∂cy (W, R)

∂W
Y ≡ c

y
WY, (A5.12)

KY =
∂cy (W, R)

∂R
Y ≡ c

y
RY, (A5.13)

where cx
W , cx

R, c
y
W , and c

y
R are unit input coefficients depending in general on W and R (see below).

Full employment in the two factor markets implies:

cx
W X + c

y
WY = L̄, (A5.14)

cx
RX + c

y
RY = K̄, (A5.15)

where L̄ is the total supply of labour and K̄ is the total supply of capital. In equation (A5.14), cx
W X and

c
y
WY represent labour absorbed in, respectively, the X-sector and the Y-sector. Hence, the left-hand side

of (A5.14) is the total demand for labour and similarly, the left-hand side of (A5.15) represents the total

demand for capital.
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Perfectly competitive firms equate price to marginal cost in each sector:

PX = cx (W, R) , (A5.16)

PY = cy (W, R) , (A5.17)

where ci is unit-cost in sector i (see above).

The demand side of the model is as follows. There is a single representative agent, whose utility

function depends on the consumption of both goods:

U = U (X, Y) . (A5.18)

The utility function is strictly quasi-concave, i.e. it features positive but diminishing marginal utility

for both goods, and possesses indifference curves which bulge toward the origin, UX > 0, UY > 0,

UXX < 0, UYY < 0, and UXXUYY − U2
XY > 0. The household’s budget restriction is given by:

PXX + PYY = M, (A5.19)

where M is total income. The household chooses its consumption of X and Y in order to maximize

(A5.18) subject to (A5.19). The first-order conditions are (A5.19) and:

UX (X, Y)

UY (X, Y)
=

PX

PY
. (A5.20)

According to (A5.20), the household equates the marginal rate of substitution between the two goods

(left-hand side) to their relative market price (right-hand side). To keep things as simple as possible, we

assume that the household’s preferences are homothetic so that the Engel curves are linear in income and

the Marshallian demands can be written as follows:

X = dx (PX , PY) M, (A5.21)

Y = dy (PX , PY) M, (A5.22)

where dx (·) and dy (·) are homogeneous of degree minus one in PX and PY.5 Obviously, it follows

from (A5.19) and (A5.21)-(A5.22) that PXdx (PX , PY) + PYdy (PX , PY) = 1. Finally, since the household is

ultimately the owner of both factors of production, aggregate income is equal to:

M = WL̄ + RK̄. (A5.23)

5See Section 1.2 in Chapter 2 for an extended discussion of homothetic preferences. Recall that Marshallian demand functions
are homogeneous of degree zero in PX , PY , and M. It follows that for homothetic preferences dx and dy are homogeneous of degree
minus one in PX and PY .
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In summary, the basic general equilibrium model can be written in compact form as follows.

L̄ = cx
W (W, R) X + c

y
W (W, R)Y, (A5.24)

K̄ = cx
R (W, R) X + c

y
R (W, R)Y, (A5.25)

PX = cx (W, R) , (A5.26)

PY = cy (W, R) , (A5.27)

X = dx (PX , PY) [WL̄ + RK̄] , (A5.28)

Y = dy (PX , PY) [WL̄ + RK̄] . (A5.29)

Equations (A5.24)-(A5.25) are obtained by combining (A5.10)-(A5.15), (A5.26)-(A5.27) are the same as

(A5.16)-(A5.17), and (A5.28)-(A5.29) are obtained by substituting (A5.23) into (A5.21)-(A5.22). The en-

dogenous variables of the model are the outputs (X and Y), the goods prices (PX and PY), and the factor

prices (W and R). The exogenous variables are the factor supplies (K̄ and L̄). Since the number of en-

dogenous variables equals the number of equations of the model, one would be tempted to conclude

that all variables are determinate. This is not the case, however, because not all six equations are in-

dependent. Indeed, according to the Law of Walras, if all but one markets are in equilibrium then so is

the last market, i.e. one equation out of (A5.24)-(A5.29) is redundant and we only have five indepen-

dent equations to determine six endogenous variables. As a result the model can only determine relative

prices.

The validity of Walras’ Law can be demonstrated as follows in the context of the basic model. Clearly,

by definition, equations (A5.28) and (A5.29) imply that spending on goods equals total factor payments:

PXX + PYY = WL̄ + RK̄. (A5.30)

By substituting the factor market clearing conditions (A5.24) and (A5.25) into (A5.30) we obtain:

PXX + PYY = W
[

cx
W X + c

y
WY
]

+ R
[

cx
RX + c

y
RY
]

= [Wcx
W + Rcx

R] X +
[

Wc
y
W + Rc

y
R

]

Y. (A5.31)

By the linear homogeneity property of the unit-cost functions we have cx = Wcx
W + Rcx

R and cy =

Wc
y
W + Rc

y
R so that (A5.31) can be rewritten as:

PXX + PYY = cxX + cyY ⇔ (PX − cx) X = − (PY − cy)Y. (A5.32)

We have now deduced a dependency between two equations featuring in the model description. Indeed,

if equation (A5.26) holds then so does (A5.27) and vice versa. One of the equations can be dropped.
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6.3.2 Loglinearizing the model

The basic model is given in (A5.24)-(A5.29) above. In order to discover some of its key properties we

adopt the usual strategy of loglinearizing it around an initial equilibrium. Since these loglinearizations

are far from trivial, we show some of the details of the derivation.6

6.3.2.1 Loglinearized demand equations

The goods demand equations can be loglinearized as follows.7 By using (A5.28)-(A5.29) we find that

X/Y = dx (PX , PY) /dy (PX , PY). Since dx and dy are both homogeneous of degree minus one in PX and

PY, it follows that dx/dy will depend only on the relative price of good X, i.e. on PX/PY. Hence, it is

clear that X/Y will also depend on that relative price only. In order to deduce the properties of dx/dy,

we recall the key first-order condition for utility maximization (A5.20) and note that for homothetic

preferences the elasticity of substitution, σD, is defined as follows:

σD ≡
d ln (Y/X)

d ln (UX/UY)
> 0. (A5.33)

It follows from (A5.20) and (A5.33) that:

d ln

(
UX

UY

)

= d ln

(
PX

PY

)

=
1

σD
d ln

(
Y

X

)

, (A5.34)

or (using the final two expressions):

X̃ − Ỹ = −σD

[
P̃X − P̃Y

]
, (A5.35)

where X̃ ≡ dX/X, Ỹ ≡ dY/Y, P̃X ≡ dPX/PX , and P̃Y ≡ dPY/PY. We have thus established that

d̃x − d̃y = −σD[P̃X − P̃Y], i.e. the relative demand for good X depends negatively on the relative price

of good X. This negative effect is stronger, the larger is the elasticity of substitution, σD.

6.3.2.2 Loglinearized price equations

The pricing equations (A5.26)-(A5.27) can be loglinearized as follows. By totally differentiating equation

(A5.26) we obtain:

dPX = cx
WdW + cx

RdR ⇒

dPX

PX
=

Wcx
W

cx

dW

W
+

Rcx
R

cx

dR

R
⇒

P̃X = θLXW̃ + θKX R̃, (A5.36)

6Readers familiar with the loglinearization techniques may skim or skip this subsection and proceed to the next.
7The more general non-homothetic case is discussed by Atkinson and Stiglitz (1980, p. 168).
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where W̃ ≡ dW/W, R̃ ≡ dR/R, and where θLX and θKX represent the factor shares of, respectively,

labour and capital in the X-sector:

θLX ≡
Wcx

W

cx
, (A5.37)

θKX ≡
Rcx

R

cx
. (A5.38)

Since the unit-cost function, cx (W, R), is linear homogeneous in W and R, it follows that the factor

shares add to unity:

cx = cx
WW + cx

RR ⇔

1 =
cx

WW

cx
+

cx
RR

cx
⇔

1 = θLX + θKX. (A5.39)

Similarly, by totally differentiating equation (A5.27) we obtain:

P̃Y = θLYW̃ + θKY R̃, (A5.40)

θLY ≡
Wc

y
W

cy , (A5.41)

θKY ≡
Rc

y
R

cy = 1 − θLY, (A5.42)

where θLY and θKY represent the factor shares of, respectively, labour and capital in the Y-sector.

Finally, by deducting (A5.40) from (A5.36) we obtain an expression linking the (change in the) rela-

tive price of good X to the (change in the) relative rental rate on labour:

P̃X − P̃Y = θLXW̃ + θKX R̃ −
[
θLYW̃ + θKY R̃

]

= θLXW̃ + (1 − θLX) R̃ −
[
θLYW̃ + (1 − θLY) R̃

]

= θ∗
[
W̃ − R̃

]
, (A5.43)

where θ∗ is defined as follows:

θ∗ ≡ θLX − θLY, (A5.44)

= θKY − θKX. (A5.45)

Note that θ∗ measures the relative factor intensity in the two sectors by means of the factor income shares

in the two sectors. (Obviously, (A5.45) follows directly from (A5.44) by noting (A5.39) and (A5.42).)

According to (A5.43), if the X-sector is relatively labour intensive (θLX > θLY so that θ∗ > 0) then

an increase in the relative price of labour (W/R) results in an increase in the relative price of good X
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(PX/PY).

6.3.2.3 Loglinearized factor market clearing equations

The factor market clearing conditions (A5.24)-(A5.25) can be loglinearized as follows. First, we totally

differentiate the labour market clearing condition (A5.24), taking into account that cx
W and c

y
W (may)

depend on W/R and allowing for exogenous changes in labour supply:

dL̄ = cx
WdX + Xdcx

W + c
y
WdY + Ydc

y
W ⇒

dL̄

L̄
=

Xcx
W

L̄

dX

X
+

cx
W X

L̄

dcx
W

cx
W

+
Yc

y
W

L̄

dY

Y
+

c
y
WY

L̄

dc
y
W

c
y
W

⇒

˜̄L = λLX

(
X̃ + c̃x

W

)
+ λLY

(

Ỹ + c̃
y
W

)

, (A5.46)

where c̃x
W ≡ dcx

W/cx
W , c̃

y
W ≡ dc

y
W/c

y
W , ˜̄L ≡ dL̄/L̄, and where λLX and λLY are the shares of the labour

force employed in, respectively, the X and the Y sector.

λLX ≡
LX

L̄
=

Xcx
W

L̄
, λLY ≡

LY

L̄
=

Yc
y
W

L̄
= 1 − λLX. (A5.47)

In a similar fashion, total differentiation of the capital market equilibrium condition (A5.25) yields:

˜̄K = λKX

(
X̃ + c̃x

R

)
+ λKY

(

Ỹ + c̃
y
R

)

, (A5.48)

where c̃x
R ≡ dcx

R/cx
R, c̃

y
R ≡ dc

y
R/c

y
R, ˜̄K ≡ dK̄/K̄, and where λKX and λKY are the shares of the capital stock

used in, respectively, the X and the Y sector.

λKX ≡
KX

K̄
=

Xcx
R

K̄
, λKY ≡

KY

K̄
=

Yc
y
R

K̄
= 1 − λKX. (A5.49)

Before going on we note that for the special case of Leontief technologies (zero substitutability in pro-

duction) all ci
j coefficients are fixed. The loglinearized model is then given by (A5.35), (A5.43), (A5.46),

and (A5.48) with c̃x
W = c̃

y
W = c̃x

R = c̃
y
R = 0 imposed in the latter two equations. We occasionally look at

the Leontief case to build intuition. In the general case, however, a change in the relative price of labour

will induce producers to change the input coefficients.

6.3.2.4 Loglinearized production coefficients

The production coefficients can be loglinearized as follows. First we totally differentiate cx
W (W, R):

dcx
W = cx

WWdW + cx
WRdR ⇒

dcx
W

cx
W

=
Wcx

WW

cx
W

dW

W
+

Rcx
WR

cx
W

dR

R
. (A5.50)
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Next we recall that the production coefficients are homogeneous of degree zero in W and R so that, by

Euler’s Theorem,8 we have:

0 × cx
W = Wcx

WW + Rcx
WR. (A5.51)

By using this result in (A5.50) we find:

c̃x
W = −

Rcx
WR

cx
W

[
W̃ − R̃

]
. (A5.52)

The Allen-Uzawa substitution elasticity between capital and labour in the technology of the X-sector is

defined, via the cost function, as follows:9

σX ≡
CxCx

WR

Cx
RCx

W

=
cxcx

WR

cx
Rcx

W

≥ 0, (A5.53)

where the second equality follows from the fact that the cost function is linear in output (see (A5.8)

above). By using (A5.53) in (A5.52) and gathering terms we get a rather convenient expression after

some straightforward steps:

c̃x
W = −

cx
R

cx

cx

cx
R

Rcx
WR

cx
W

[
W̃ − R̃

]

= −
cx

RR

cx

cxcx
WR

cx
Rcx

W

[
W̃ − R̃

]

= −σXθKX

[
W̃ − R̃

]
, (A5.54)

where θKX is the factor share of capital in the X-sector (see (A5.38) above). According to (A5.54), pro-

vided there are technological substitution possibilities (σX > 0), an increase in the relative rental price

of labour leads to a decrease in the unit-input coefficient for labour in the X-sector. Producers substi-

tute capital for labour along a given isoquant—the factor substitution effect studied in Chapter 5. Not

surprisingly, loglinearization of cx
R (W, R) confirms this result for the unit-input coefficient for capital:

c̃x
R = σXθLX

[
W̃ − R̃

]
. (A5.55)

By using the same approach we find that the unit-input coefficients for the Y-sector can be loglin-

earized as follows:

c̃
y
W = −σYθKY

[
W̃ − R̃

]
, (A5.56)

8Euler’s Theorem (for two variables): if F (X1, X2) is homogeneous of degree k, then it can be written as:

kF (X1, X2) = F1X1 + F2X2,

where Fi ≡ ∂F/∂Xi . See Sydsæter, Strøm, and Berck (2000, p. 28).
9See, for example, Sydsæter, Strøm, and Berck (2000, p. 155).
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c̃
y
R = σYθLY

[
W̃ − R̃

]
, (A5.57)

where σY is the substitution elasticity in the Y-sector:

σY ≡
cyc

y
WR

c
y
Rc

y
W

≥ 0. (A5.58)

6.3.2.5 Factor market clearing equations again

By substituting (A5.54)-(A5.57) into the relevant places in (A5.46) and (A5.48) we obtain the most general

expressions for the factor market equilibrium loci:

˜̄L = λLXX̃ + λLYỸ − [λLXθKXσX + λLYθKYσY]
[
W̃ − R̃

]
, (A5.59)

˜̄K = λKXX̃ + λKYỸ + [λKXθLXσX + λKYθLYσY]
[
W̃ − R̃

]
. (A5.60)

In the final step, we deduct (A5.60) from (A5.59) to get:

˜̄L − ˜̄K = − [λLXθKXσX + λLYθKYσY + λKXθLXσX + λKYθLYσY]
[
W̃ − R̃

]

+ (λLX − λKX) X̃ + (λLY − λKY) Ỹ, (A5.61)

or (after simplification, using λLY = 1 − λLX, λKY = 1 − λKX, and gathering terms):

λ∗
[
X̃ − Ỹ

]
=
[

˜̄L − ˜̄K
]

+ [aXσX + aYσY]
[
W̃ − R̃

]
, (A5.62)

where λ∗, aX and aY are defined as follows:

λ∗ ≡ λLX − λKX, (A5.63)

aX ≡ λLXθKX + λKXθLX > 0, (A5.64)

aY ≡ λLYθKY + λKYθLY > 0. (A5.65)

Like θ∗, defined in (A5.44)-(A5.45) above, λ∗ is a measure for the relative factor intensity. The difference

between the two measures lies in the fact that λ∗ is in terms of physical units whereas θ∗ is in terms of

factor shares. According to (A5.62), if X is relatively labour intensive in the physical sense (λ∗
> 0), then

an increase in X/Y is associated with a rise in W/R.

We now have two measures for the relative factor intensity which may or may not give the same
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ranking. In the absence of distortions and/or taxes, however, λ∗ and θ∗ always have the same sign:

λ∗

>

=

<

0 ⇔ θ∗

>

=

<

0. (A5.66)

The proof of this important result proceeds as follows (see also Jones (1965, p. 559) or Atkinson and

Stiglitz (1980, pp. 169-170)). Using L̄ = LX + LY and K̄ = KX + KY in (A5.63), λ∗ can be rewritten as:

λ∗ ≡
LX

L̄
−

KX

K̄

=
LX (KX + KY)− (LX + LY)KX

L̄K̄

=
LXKY − LYKX

L̄K̄
. (A5.67)

Similarly, by using (A5.8)-(A5.10), (A5.12), and noting that Ci = WLi + RKi (for i ∈ (X, Y)), θ∗ can be

rewritten as:

θ∗ ≡
Wcx

W

cx
−

Wc
y
W

cy

=
WLX

cxX
−

WLY

cyY

= W

[
LX (WLY + RKY)− LY (WLX + RKX)

CxCy

]

=
WR [LXKY − LYKX ]

CxCy =
WL̄RK̄

CxCy λ∗, (A5.68)

where we have used (A5.67) to arrive at the final expression. It follows from (A5.68) that λ∗ and θ∗ have

the same sign.

6.3.3 Qualitative analysis of the model

We now possess all the ingredients needed to characterize the key properties of the simple general

equilibrium model. The key equations of the model are restated here for convenience:

X̃ − Ỹ = −σD

[
P̃X − P̃Y

]
, (A5.69)

P̃X − P̃Y = θ∗
[
W̃ − R̃

]
, (A5.70)

λ∗
[
X̃ − Ỹ

]
=
[

˜̄L − ˜̄K
]

+ [aXσX + aYσY]
[
W̃ − R̃

]
. (A5.71)

Equation (A5.69) is the relative demand equation relating X/Y to PX/PY, (A5.70) is the competitive

(relative) pricing relationship establishing the link between relative prices of goods and factors (i.e. of

PX/PY to W/R), and (A5.71) represents the factor market equilibrium conditions relating W/R to X/Y
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and L̄/K̄. The endogenous variables of the model are X/Y, PX/PY, and W/R. The exogenous variable

is L̄/K̄.

In Figure 6.2 we illustrate the determination of the general equilibrium under the assumption that

the X-sector is relatively labour intensive (so that λ∗
> 0 and θ∗ > 0). In the top right-hand panel,

the D curve is the relative demand equation (A5.69). It slopes down because σD > 0. In the top left-

hand panel, the FME curve represents the factor markets equilibrium locus (A5.71), holding constant the

economy-wide labour-capital ratio, L̄/K̄. In view of the assumption that the X-sector is labour intensive

(λ∗
> 0), FME is an upward sloping line.10 In the bottom left-hand panel, the 45◦ line projects the

W/R ratio onto the vertical axis. Finally, in the bottom right-hand panel the CPR curve represents the

competitive pricing relationship (A5.70). The intensity assumption (that θ∗ > 0) implies that this curve

is upward sloping.

Taken in combination, CPR and FME characterize the supply side of the model. The supply curve, S, in

the top right-hand panel is constructed graphically by “completing the boxes” for different relative price

levels (see, for example, the boxes abcd and efgh). The thus constructed supply curve is upward sloping.

Of course, the mathematical expression for the supply curve can be obtained directly by combining

(A5.70) and (A5.71) and eliminating W̃ − R̃:

X̃ − Ỹ =
1

λ∗

[
˜̄L − ˜̄K

]

+
aXσX + aYσY

λ∗θ∗
[
P̃X − P̃Y

]
. (A5.72)

Regardless of the factor intensity assumption, the S curve is upward sloping (because (A5.66) implies

that λ∗θ∗ > 0).

The general equilibrium occurs at the intersection of the S curve with the D curve, i.e. at point E0

in Figure 6.2. Using (A5.69)-(A5.71) we find the mathematical representation of the general equilibrium

solutions for X/Y, W/R, and PX/PY:

P̃X − P̃Y =
θ∗[ ˜̄K − ˜̄L]

λ∗θ∗σD + aXσX + aYσY
, (A5.73)

X̃ − Ỹ = −
σDθ∗[ ˜̄K − ˜̄L]

λ∗θ∗σD + aXσX + aYσY
, (A5.74)

W̃ − R̃ =
˜̄K − ˜̄L

λ∗θ∗σD + aXσX + aYσY
. (A5.75)

Provided there is some substitutability in the economy, and at least one of σD, σX, and σY is strictly

positive, the denominator of these expressions is unambiguously positive because λ∗θ∗ > 0 and ai > 0.

Consider the effects of an increase in the relative abundance of labour (an increase in the L̄/K̄ ratio).

In Figure 6.3, the only curve that is affected is the FME curve (which shifts up, from FME0 to FME1). As

a result of this shift, the supply curve also shifts up (from S0 to S1) and the equilibrium shifts from E0 to

10Note that all axes in Figure 6.2 are positively defined. Though FME looks (at first view) like a downward sloping function it
is actually an upward sloping relationship between X/Y and W/R.
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Figure 6.2: Two-sector general equilibrium (X labour-intensive)

E1. In the new equilibrium, PX/PY and W/R are lower whilst X/Y is higher than before the shock. In

mathematical terms these comparative static results are verified by (A5.73)-(A5.75).

In order to demonstrate the role of factor substitutability on the production side, consider the case

with Leontief technology in both sectors (i.e. σX = σY = 0). This case has been illustrated in Figure 6.4.

Since σX = σY = 0 it follows from (A5.71) that the FME curve is independent of the W/R ratio, i.e. it

is horizontal (see FME0 in Figure 6.4). As a result, the supply curve is independent of PX/PY, i.e. it is

also horizontal–see S0, or alternatively equation (A5.72). The initial equilibrium is at point E0. Equality

between demand, D, and supply, S0, determines the equilibrium relative goods price (PX/PY) which, via

the pricing relationship CPR, determines the equilibrium relative price of labour (W/R). An increase in

L̄/K̄ leads to an upward shift of the FME curve (from FME0 to FME1), an upward shift in supply (from

S0 to S1), a decrease in PX/PY, and a decrease in W/R.

6.4 Tax incidence in general equilibrium

In this section we perform tax policy analysis using the general equilibrium model developed above.

Following Atkinson and Stiglitz (1980, pp. 173-183), we consider a range of ad valorem taxes, namely

(i) taxes on factor prices in both sectors, denoted by tKX, tKY, tLX, and tLY, and (ii) excise taxes on the

consumption of the two goods, denoted by tX and tY. All tax revenues are recycled to the representative

household in the form of lump-sum transfers. To keep matters simple, we continue to restrict attention

to the homothetic case.

Rather than redoing all derivations, we simply note where the changes in the model occur. First, in

view of the fact that both factors of production are taxed, firms react to tax-inclusive factor prices, i.e.
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Figure 6.3: Increase in labour endowment (X labour-intensive)
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Figure 6.4: Leontief technology (X labour-intensive)
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to W (1 + tLi) for labour and to R (1 + tKi) for capital, where i = X, Y. The factor market equilibrium

conditions (A5.14)-(A5.15) are thus changed to:

L̄ = cx
W (W (1 + tLX) , R (1 + tKX)) X + c

y
W (W (1 + tLY) , R (1 + tKY))Y, (A5.76)

K̄ = cx
R (W (1 + tLX) , R (1 + tKX)) X + c

y
R (W (1 + tLY) , R (1 + tKY))Y. (A5.77)

and the (producer) price equations (A5.16)-(A5.17) are changed to:

PX = cx (W (1 + tLX) , R (1 + tKX)) , (A5.78)

PY = cy (W (1 + tLY) , R (1 + tKY)) . (A5.79)

In the presence of excise taxes, households react to consumer prices, Pi (1 + ti), so that the demand

equations (A5.21)-(A5.22) are modified to:

X = dx (PX (1 + tX) , PY (1 + tY)) M, (A5.80)

Y = dy (PX (1 + tX) , PY (1 + tY)) M, (A5.81)

where M is after-tax household income:

M ≡ W (1 − tL) L̄ + R (1 − tK) K̄ + T, (A5.82)

and T is the total tax revenue:

T = W [tL L̄ + tLX LX + tLY LY] + R [tKK̄ + tKXKX + tKYKY]

+ tXPXX + tYPYY. (A5.83)

In equation (A5.82), tL and tK are the taxes levied on, respectively, labour income and capital income of

the household. The model consists of equations (A5.76)-(A5.83), of which one is redundant. The endoge-

nous variables are X, Y, PX , PY, W, R, and T, whilst the exogenous variables are the factor endowments

and the tax rates K̄, L̄, tLX, tLY, tKX, tKY, tX, tY, tL, and tK. Even though tax revenue is determined

endogenously within the general equilibrium model, in formulating its optimal consumption decision

the household treats it parametrically (i.e., as a lump-sum transfer).

As was shown by Musgrave (1959, ch. 15) and McLure (1975, p. 137), several tax equivalency results

can now be demonstrated within the context of the model. These equivalencies have been summarized

in Table 6.1. First, an equal tax on both factors in the same industry (e.g. tLX = tKX) has no factor substi-

tution effect and is equivalent to an excise tax on the good produced by that industry. This equivalency

is reported in the first row of Table 6.1. Formally, since tLX = tKX it follows from the linear homogeneity

of the unit cost function (A5.78) that PX = cx (W (1 + tLX) , R (1 + tKX)) = (1 + tLX) cx (W, R), i.e. the
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tKX + tLX = tX

+ + +
tKY + tLY = tY

q q q
tK + tL = t

Table 6.1: Tax equivalencies

common factor tax raises the price of good X just as an excise tax tX does. By analogy, the second row

of Table 6.1 says that there is an equivalency between tLY = tKY and tY.

Second, an equal tax on the production factor capital (tKX = tKY) is equivalent to a tax on capital

income received by households (tK). This equivalency result is reported in the first column of Table 6.1.

Formally, since tKX = tKY, it follows from (A5.76)-(A5.79) that the tax-inclusive rental rate on capital

faced by producers is R′ ≡ (1 + tKX) R. Similarly, since tK = 0 it follows from (A5.82)-(A5.83) that

the rental rate entering household income also equals R′. If instead capital is untaxed at firm level

(tKX = tKY = 0) but capital income of households is taxed (tK > 0), then the only rental rate appearing

in the model is R. The systems of capital taxation therefore must yield exactly the same allocation.

Again, by analogy, the second column in Table 6.1 shows that the systems (tL = 0, tLX = tLY > 0) and

(tL > 0, tLX = tLY = 0) are equivalent.

Third, a tax on capital income and labour income at the same rate (i.e., a general income tax, t =

tK = tL) has the same effect as a tax on both products at the same rate (i.e., a general consumption tax,

t = tX = tY). In both cases there is no effect on relative prices or relative factor returns. This equivalency

result has been reported in the third row and the third column in Table 6.1.

An implication of these equivalency results is that we only need to study four (out of the nine) taxes

set out in the model, provided they are independent, i.e. provided they do not all come from the same

row or column (McLure, 1975, p. 138). For example, if we know the incidence of tKX, tK, tX, and t, then

we can deduce the incidence of the remaining taxes with the aid of Table 6.1. Of course, the incidence of

the general income tax, t, is particularly easy to deduce for the present case with fixed factor supplies.

Such a tax has no effect on relative product prices or relative factor prices.

Following exactly the same steps as before we find the loglinearized model (see subsection 6.3.2

above for details on loglinearization):

X̃ − Ỹ = −σD

[
P̃X − P̃Y + t̃X − t̃Y

]
, (A5.84)

P̃X − P̃Y = θ∗
[
W̃ − R̃

]
+ θLX t̃LX − θLY t̃LY + θKX t̃KX − θKY t̃KY, (A5.85)

λ∗
[
X̃ − Ỹ

]
= [aXσX + aYσY]

[
W̃ − R̃

]
+ aXσX [t̃LX − t̃KX]

+ aYσY [t̃LY − t̃KY] , (A5.86)

where t̃i ≡ dti/ (1 + ti) and t̃ji ≡ dtji/
(
1 + tji

)
for j ∈ (K, L) and i ∈ (X, Y). Equation (A5.84) is the rel-

ative demand equation relating X/Y to PX (1 + tX) / [PY (1 + tY)]. Equation (A5.85) is the competitive
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(relative) pricing relationship relating PX/PY to W/R and the various factor tax rates. Finally, equa-

tion (A5.86) represents the factor market equilibrium conditions relating W/R to X/Y and the different

factor tax rates.

As is pointed out by Atkinson and Stiglitz (1980, pp. 180-181), a complication arises because in

the presence of taxes (or other non-tax distortions), the intensity ranking according to physical factor

intensity (λ∗) may not be the same as the intensity ranking according to factor shares (θ∗). The reason

for this complication is that the θji-shares appearing in the loglinearized model are tax-inclusive, i.e.

instead of (A5.37)-(A5.38) and (A5.41)-(A5.42) we now have:

θLX ≡
W (1 + tLX) cx

W

cx
, θKX ≡

R (1 + tKX) cx
R

cx
= 1 − θLX, (A5.87)

θLY ≡
W (1 + tLY) c

y
W

cy , θKY ≡
R (1 + tKY) c

y
R

cy = 1 − θLY. (A5.88)

By using these expressions, θ∗ ≡ θLX − θLY can be rewriting as follows:

θ∗ ≡
W (1 + tLX) cx

W

cx
−

W (1 + tLY) c
y
W

cy

=
W (1 + tLX) LX

cxX
−

W (1 + tLY) LY

cyY

=
WR [(1 + tLX) (1 + tKY) LXKY − (1 + tLY) (1 + tKX) LYKX ]

CxCy , (A5.89)

where we have used the fact that Ci = W (1 + tLi) Li + R (1 + tKi)Ki (for i = X, Y) in going from the

second to the third line. Comparing this expression to the one for λ∗ (given in (A5.67) above) reveals

why the ranking may differ. In the special case, with (1 + tLX) (1 + tKY) equal to (1 + tLY) (1 + tKX), the

signs of λ∗ and θ∗ are guaranteed to be the same. In the general case they may not be the same. For the

remainder of this chapter, however, we simply assume that the intensity rankings remain the same.

6.4.1 General equilibrium tax effects

In this subsection we conduct a number of comparative static experiments. We assume throughout that

X is relatively labour-intensive according to both intensity measures, i.e. θ∗ > 0 and λ∗
> 0.

The effect on a marginal change in the excise tax on good X is illustrated in Figure 6.5. In terms

of the model (A5.84)-(A5.86), the shock is such that t̃X > 0 whilst all other taxes are kept unchanged

(t̃Y = t̃LX = t̃LY = t̃KX = t̃KX = 0). The model reduces to:

X̃ − Ỹ = −σD

[
P̃X − P̃Y + t̃X

]
, (A5.90)

P̃X − P̃Y = θ∗
[
W̃ − R̃

]
, (A5.91)

λ∗
[
X̃ − Ỹ

]
= [aXσX + aYσY]

[
W̃ − R̃

]
. (A5.92)
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Figure 6.5: Increase in the output tax tX (X labour-intensive)

The increase in tX shifts the demand curve down, say from D0 to D1. As a result, the equilibrium shifts

from E0 to E1, and PX/PY, X/Y, and W/R all fall. In this case there is only an output (or volume) effect:

as a result of the shock, the pattern of demand changes in favour of good Y. Since X/Y falls and since

X is relatively labour intensive, the wage-rental ratio falls. This effect holds regardless of the magnitude

of the substitution elasticity in the X-sector. The mathematically expressions for the comparative static

effects can be obtained from (A5.90)-(A5.92):

X̃ − Ỹ = −
(aXσX + aYσY) σD

λ∗θ∗σD + aXσX + aYσY
t̃X < 0, (A5.93)

P̃X − P̃Y = −
λ∗θ∗σD

λ∗θ∗σD + aXσX + aYσY
t̃X < 0, (A5.94)

W̃ − R̃ = −
λ∗σD

λ∗θ∗σD + aXσX + aYσY
t̃X < 0. (A5.95)

The second tax policy experiment consists of a marginal change in the capital tax in sector X is

illustrated, i.e. t̃KX > 0 and all other taxes are kept constant (t̃X = t̃Y = t̃LX = t̃LY = t̃KY = 0). The

model (A5.84)-(A5.86) simplifies to:

X̃ − Ỹ = −σD

[
P̃X − P̃Y

]
, (A5.96)

P̃X − P̃Y = θ∗
[
W̃ − R̃

]
+ θKX t̃KX, (A5.97)

λ∗
[
X̃ − Ỹ

]
= [aXσX + aYσY]

[
W̃ − R̃

]
− aXσX t̃KX. (A5.98)

In the general case (with σX > 0), both the FME and CPR curves are affected, i.e. there are both output

effects and factor substitution effects. To disentangle these effects we first consider the output effect in

isolation. Figure 6.6 is based on the Leontief assumption that the substitution elasticity in the X-sector
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Figure 6.6: Increase in the corporate tax tKX (X labour-intensive, σX = 0)

is zero (σX = 0). It follows from (A5.98) that the FME is not affected by the tax change in that case. The

CPR curve shifts to the right, from CPR0 to CPR1, as does the supply curve, which shifts from S0 to S1.

The equilibrium shifts from E0 to E1, PX/PY rises, X/Y falls, and W/R falls. Despite the fact that capital

is taxed, the rental rate on capital rises relative to wages. There is only an output (or volume) effect: PX/PY

falls and demand shifts toward good Y (X/Y falls). Since X is labour-intensive, labour demand drops

off whilst capital demand is boosted. In equilibrium W/R has to fall.

In Figure 6.7 we consider the general case (i.e. σX > 0). As in the Leontief case, the CPR curve shifts

to the right, say from CPR0 to CPR1. Because factor substitution is now possible, the FME curve shifts

down, say from FME0 to FME1. Combining these results we find that the supply curve shifts to the right,

from S0 to S1. In the top right-hand panel the equilibrium shifts from E0 to E1, PX/PY rises and X/Y

falls. The resulting effect on W/R is ambiguous, although the figure is drawn under the assumption

that the rental rate on capital falls relative to wages. In order to determine the conditions under which

this result obtains, we solve the model (A5.96)-(A5.98):

X̃ − Ỹ = −
σD [aXσXθKY + aYσYθKX ]

λ∗θ∗σD + aXσX + aYσY
t̃KX < 0, (A5.99)

P̃X − P̃Y =
aXσXθKY + aYσYθKX

λ∗θ∗σD + aXσX + aYσY
t̃KX > 0, (A5.100)

W̃ − R̃ =
aXσX − λ∗θKXσD

λ∗θ∗σD + aXσX + aYσY
t̃KX R 0. (A5.101)

Equation (A5.101) confirms that the effect on the relative price of labour, W/R, is ambiguous. Since λ∗
>

0, the sign of the effect is determined by the numerator which has two terms, namely (i) a positive factor

substitution effect (represented by aXσX) and (ii) a negative output effect (represented by −λ∗θKXσD).



CHAPTER 6: TAX INCIDENCE IN GENERAL EQUILIBRIUM 187

E0

!

45�

!

!

!

!

D

S0FME0

CPR0

W / R

W / R

X / Y

PX / PY

FME1

S1

E1

!

CPR1

!

!

Figure 6.7: Increase in the corporate tax tKX (X labour-intensive)

Figure 6.7 is thus drawn under the assumption that the output effect dominates.

6.4.2 Applied general equilibrium model

Up to this point attention has been restricted to the analysis of differential tax incidence, i.e. only relative

output and price effects are considered. Of course, once a numeraire has been chosen, the general

equilibrium model given in equations (A5.76)-(A5.83) above can also be solved in level terms. Two

approaches are possible. First, for small tax changes it suffices to loglinearize the model in order to find

the comparative static effects. Second, for large tax changes the loglinearization approach is generally

invalid but comparative static effects can be computed numerically. In this subsection we demonstrate

both approaches. To keep things simple, we restrict attention to the case of a capital tax in the X sector.

This tax is assumed to be zero initially, but it is raised in the comparative static exercise. The output

of the Y sector is chosen as the numeraire commodity so that PY = 1. The model considered in this

subsection is given in general terms as:

L̄ = cx
W (W, R (1 + tKX)) X + c

y
W (W, R)Y, (A5.102)

K̄ = cx
R (W, R (1 + tKX)) X + c

y
R (W, R)Y, (A5.103)

PX = cx (W, R (1 + tKX)) , (A5.104)

1 = cy (W, R) , (A5.105)

X = dx (PX , 1) M, (A5.106)

M = WL̄ + RK̄ + T, (A5.107)

T = tKXRcx
R (W, R (1 + tKX)) X. (A5.108)
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Note that the demand equation for good Y is dropped because, by the Law of Walras, it is implied by the

remaining equations of the model (see also the discussion below equations (A5.24)-(A5.29) above).

6.4.2.1 Small changes

The comparative static effects of the change in tKX on relative output, X/Y, the relative goods price

PX/PY, and the relative wage rate, W/R, are given in equations (A5.99)-(A5.101) above. In order to

obtain expressions for the output effects in absolute terms, it suffices to loglinearize equations (A5.106)-

(A5.108), taking into account that tKX = 0 initially, and holding constant the exogenous factor supplied

( ˜̄L = ˜̄K = 0). After some straightforward manipulations we find:

X̃ = − [ωX + σD (1 − ωX)] P̃X + M̃, (A5.109)

M̃ = ωLW̃ + (1 − ωL) R̃ + T̃, (A5.110)

T̃ = ωXθKX t̃KX, (A5.111)

where ωX ≡ PXX/M is share of household income spent on good X, ωL ≡ WL̄/ (WL̄ + RK̄) is the

income share of labour, and 1 − ωL ≡ RK̄/ (WL̄ + RK̄) is the income share of capital.11 In equations

(A5.110) and (A5.111), T̃ is defined as T̃ ≡ dT/M.

The expression for the demand equation in equation (A5.109) can be simplified substantially. First,

M̃ and T̃ can be eliminated by substituting (A5.110)-(A5.111) into (A5.109). Second, it follows from the

loglinearized version of equation (A5.105) that W̃ and R̃ are related according to θLYW̃ + θKY R̃ = 0, or:

R̃ = −
θLY

θKY
W̃, (A5.112)

W̃ − R̃ =
1

θKY
W̃, (A5.113)

where we have used the fact that θKY + θLY = 1. Third, the share parameters ωL and ωX can be expressed

in terms of the “fundamental parameters” appearing elsewhere in the general equilibrium model (i.e.

11Equation (A5.109) is obtained as follows. First, we loglinearize the household budget constraint, PX X + PYY = M, to obtain:

ωX [X̃ + P̃X ] + (1 − ωX) [Ỹ + P̃Y ] = M̃.

Next we use this expression in combination with (A5.35) to solve for X̃ and Ỹ in terms of P̃X , P̃Y , and M̃.

X̃ = − [ωX + σD (1 − ωX)] P̃X + (σD − 1) (1 − ωX) P̃Y + M̃,

Ỹ = (σD − 1)ωX P̃X − [1 − ωX + σDωX ] P̃Y + M̃.

Finally, by setting P̃Y = 0 in the first equation we obtain (A5.109).
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the intensity coefficients):12

ωX =
θLYλLX

θLXλLY + θLYλLX
, (A5.114)

ωL =
θLYθLX

θLXλLY + θLYλLX
. (A5.115)

By imposing all these simplifications, the loglinearized demand equation (A5.109) can be written as:

X̃ = −
σDθLXλLY + θLYλLX

θLXλLY + θLYλLX
P̃X +

θLYλLX

θLXλLY + θLYλLX
θ∗
[
W̃ − R̃

]

+
θLYθKXλLX

θLXλLY + θLYλLX
t̃KX, (A5.116)

where the relative price effect is given in (A5.100) (with P̃Y = 0 imposed), and the relative wage effect is

stated in (A5.101). Equation (A5.116) identifies the three mechanisms explaining the general equilibrium

effect on output in the X sector. The first term on the right-hand side is negative because the capital tax

drives up the price. The second term on the right-hand side is ambiguous due to offsetting output and

factor substitution effects (as was explained above). The third term on the right-hand side is positive

because the lump-sum transfer received from the tax authority boosts demand.

6.4.2.2 Large changes

As we have shown above, it is in principle possible to compute the level effects of small changes in

tax rates. Even for the simple two-by-two model under consideration, however, general analytical con-

clusions are typically hard to come by. Indeed, as is clear from our discussion surrounding equation

(A5.116) above, the effects on outputs and the wage-rental rate of an isolated change in the capital tax

in the X sector are ambiguous in general. Unless drastic simplifications are incorporated in the model,

this ambiguity will remain.

In order to circumvent the fundamental limitations of small analytical models, researchers have redi-

rected their attention to so-called applied general equilibrium (AGE) models over the last three decades.

AGE models are typically based on a realistically detailed multi-sectoral description of the economy

and the effects of complex policy measures are investigated with the aid of computational experiments.

With the advent of cheap computing power, the simulation of large non-linear models is feasible even

on relatively cheap personal computers. In the remainder of this subsection we will formulate a simple

AGE model based on Shoven and Whalley (1984). This toy model is then used to simulate the effects of

large tax changes.

In contrast to Shoven and Whalley, and in order to facilitate the comparison with the theoretical

12Here are two pieces of advice to students who want to work with small analytical models. First, in order to deduce the
maximum amount of interpretable analytical results from such a model, it is imperative to state the model in terms of its most
fundamental parameters only. Inclusion of non-fundamental (composite) parameters inevitably hide patterns that exist in the
result. Second, write down the definitions of all parameters and their inter-relationships on a big piece of paper and display it
prominently on your desk so that you can refer to it at all times.
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model presented above, our example AGE model is formulated in its dual format. There are two pro-

ductions sectors, X and Y, and the unit cost functions in the two sectors are given by:

cx =
1

φX

[

εσX
X W1−σX + (1 − εX)

σX [R (1 + tKX)]
1−σX

]1/(1−σX)
, (A5.117)

cy =
1

φY

[

ε
σY
Y W1−σY + (1 − εY)

σY R1−σY

]1/(1−σX)
, (A5.118)

where φi is an exogenous scale parameter, εi is the efficiency parameter of labour in the production

function, and σi is the substitution elasticity between capital and labour (for i = X, Y).13 The input

coefficients appearing in (A5.102)-(A5.103) and (A5.108) are thus given by:

(cx
W ≡)

∂cx

∂W
=

1

φX

[

εX + (1 − εX)
σX

(
εXRX

W

)1−σX
]σX/(1−σX)

, (A5.119)

(cx
R ≡)

∂cx

∂RX
=

1

φX

[

1 − εX + εσX
X

(
(1 − εX)W

RX

)1−σX
]σX/(1−σX)

, (A5.120)

(

c
y
W ≡

) ∂cy

∂W
=

1

φY

[

εY + (1 − εY)
σY

(
εYR

W

)1−σY
]σY/(1−σY)

, (A5.121)

(

c
y
R ≡

) ∂cy

∂R
=

1

φY

[

1 − εY + ε
σY
Y

(
(1 − εY)W

R

)1−σY
]σY/(1−σY)

, (A5.122)

where RX ≡ R (1 + tKX).

The representative household features the following indirect utility function:

V (PX , PY, M) =
M

PV
, (A5.123)

PV ≡
[

αXP1−σD
X + (1 − αX) P1−σD

Y

]1/(1−σD)
, (A5.124)

where PV is the true price index (linking income and utility), αX and 1 − αX are, respectively, the share

parameter for goods X and Y, and σD is the substitution elasticity between the two goods.14 The Mar-

shallian demands are obtained from (A5.123) by applying Roy’s Identity:

PXX =
αXP1−σD

X M

αXP1−σD
X + (1 − αX) P1−σD

Y

, (A5.125)

13The underlying production functions take the following form:

X = φX

[

εX L
(σX−1)/σX
X + (1 − εX)K

(σX−1)/σX
X

]σX /(σX−1)
,

Y = φY

[

εY L
(σY−1)/σY
Y + (1 − εY)K

(σY−1)/σY
Y

]σY /(σY−1)

14The underlying direct utility function takes the following form:

U =
[

α
1/σD
X X(σD−1)/σD + (1 − αX)

1/σD Y(σD−1)/σD

]σD /(σD−1)
.
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Technology Parameters
Sector φi εi σi

X 1.5 0.6 2.0
Y 2.0 0.7 0.5

Taste Parameters
αX σD

0.5 1.5

Endowments
K̄ 20
L̄ 60

Table 6.2: Parameters and endowments

PYY =
(1 − αX) P1−σD

Y M

αXP1−σD
X + (1 − αX) P1−σD

Y

, (A5.126)

where household income is defined in (A5.107) above.

The full model consists of equations (A5.102)-(A5.108), with the functional forms as given in (A5.117)-

(A5.122) and (A5.125). In order to simulate the model, numerical values must be assigned to the param-

eters (εX, σX , φX , εY, σY, φY, αX , and σD) and the factor supplies (L̄ and K̄). In real-world applications of

the AGE methodology there are two main sources for these parameters. First, there may be econometric

evidence regarding some of the elasticities appearing in the model, e.g. household demand studies may

yield estimates for σD and αX . Second, some parameters (such as φX and φY) may be used in order to

calibrate the model to some base-year situation. Basic data for the economy are gathered (e.g. from the

national income accounts) and the calibration parameters are set in such a way that the AGE model best

captures the initial situation.

Since the objective here is to present a simple toy version of an AGE model, we follow Shoven and

Whalley by simply postulating the parameters of the model. The values chosen are reported in Table

6.2. Substitution between capital and labour is relatively easy in the X-sector (σX = 2) and relatively

difficult in the Y-sector (σY = 0.5). The substitution elasticity between the two goods in the household’s

utility function is relatively high (σD = 1.5) ensuring that the two goods are gross substitutes (Varian,

1992, p. 395). Finally, note that the economy-wide capital labour ratio is equal to K̄/L̄ = 1/3.

In the initial equilibrium, there is no tax on capital use in the X-sector, i.e. tKX = 0. The general

equilibrium results for all variables have been reported in the columns marked (a) in Table 6.3. The

interested student should verify that this is indeed the solution, satisfying the zero profit conditions,

marginal cost pricing, and goods and labour market equilibrium conditions. Next we introduce a huge

shock, in that a large tax is introduced on the use of capital in the X-sector, i.e. tKX is changed from

tKX = 0 to tKX = 0.5. The new general equilibrium is reported in the columns marked (b) in Table

6.3. As a result of the tax increase, PX , W, and Y increase, whereas R and X decrease. Obviously,

therefore, the model predicts that PX/PY and W/R both increase and X/Y decreases. The results in
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Equilibrium Prices Simulation Features
(a) (b)

PX 1.297 1.488 Parameters: see Table 6.2
PY 1.000 1.000 Column (a): zero tax on capital in X-sector (tKX = 0)
W 0.944 1.039 Column (b): 50% tax on capital in X-sector (tKX = 0.5)
R 1.205 1.050

Production Accounts Household Accounts
(a) (b) (a) (b) (a) (b)

X 31.285 27.767 Y 46.203 50.410
PXX 40.572 41.323 PYY 46.203 50.410 PXX + PYY 86.775 91.733
LX 31.870 30.746 LY 28.130 29.254
WLX 30.092 31.953 WLY 26.561 30.403 WL̄ 56.653 62.356
KX 8.698 5.948 KY 16.302 19.052
RKX 10.480 6.246 RKY 19.643 20.007 RK̄ 30.123 26.254
tKXRKX 0 3.123 T 0 3.123
Cx 40.572 41.323 Cy 46.203 50.410

Table 6.3: A large tax change

Table 6.3 imply that the X-sector is relatively labour intensive according to both intensity measures, i.e.

the relative results implied by the simulation are consistent with the situation depicted in Figure 6.7

above. Given the parameter values and endowments reported in Table 6.2, the factor substitution effect

dominates the negative output effect in equation (A5.101), so that W/R rises unambiguously.

As a result of the tax increase, household income increases from 86.775 to 91.733. Labour income

increases (from 56.653 to 62.356), capital income decreases (from 30.123 to 26.254), but the latter decrease

is more than compensated by the increase in the lump-sum transfer received from the government (from

0 to 3.123). It would be tempting (but very wrong) to conclude that the household is better off as a result

of the tax increase. Income has increased but so has the (relative) price of goods from the X-sector. The

welfare comparison can only be made by computing the change in indirect utility (A5.123) resulting

from the tax shock. Using the results in Table 6.3, it is not difficult to compute that V changes from

Vold = 76.521 “utils” to Vnew = 75.941 “utils”. Even though income increases, the true cost of living

index increases by even more, namely from Pold
V = 1.134 to Pnew

V = 1.208.

But how bad is the loss of 0.58 “utils” for the household? As is pointed out by Shoven and Whalley

(1984, p. 1014), there are two widely employed measures to evaluate the welfare effect in economically

intuitive terms, namely the Compensating Variation (CV) measure and the Equivalent Variation (EV) mea-

sure. The former takes the new values for prices and income and computes how much income must

be taken away (or added) in order to restore the household to its initial indifference curve. In contrast,

the EV measure takes the old values for prices and income, and computes how much income must be

added (or taken away) in order to bring the household to its post-shock indifference curve. For a welfare

increase (decrease), CV and EV are both positive (negative). Using obvious notation, we find that the
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Measure Value Units of measurement

CV −0.701 units of good Y
EV −0.658 units of good Y

(CV/Mnew)× 100 −0.764% percentage of national income
(EV/Mnew)× 100 −0.717% percentage of national income

(CV/Tnew)× 100 −22.435% percentage of ultimate tax revenue
(EV/Tnew)× 100 −21.062% percentage of ultimate tax revenue

Table 6.4: Welfare effect of capital taxation

two measures are given by:

Mnew − CV

Pnew
V

≡
Mold

Pold
V

⇔ CV ≡ Mnew − Pnew
V

Mold

Pold
V

, (A5.127)

Mnew

Pnew
V

≡
Mold + EV

Pold
V

⇔ EV ≡ Pold
V

Mnew

Pnew
V

− Mold. (A5.128)

The computed welfare losses according to the two measures are reported in Table 6.4. In physical terms,

the welfare cost of capital taxation lies in the range of 0.658-0.701 units of good Y. Given that over 50

units of good Y are produced, the welfare cost appears to be small. The second block of figures in Table

6.4 shows that the welfare cost amounts to about 0.7 percent of national income. Although this appears

to be a small amount, the third block of entries in the table confirms that the welfare cost is actually quite

substantial when expressed in terms of the ultimate tax revenue that the tax gives rise to. Indeed, the

welfare cost amounts to more than 20 percent of tax revenue, suggesting that the capital tax is a costly

instrument to raise revenue for the government.

6.4.2.3 Approximation error

In this section we have used a simple two-by-two general equilibrium model to illustrate the two major

approaches to tax incidence analysis. If one is primarily interested in qualitative results, then the analysis

based on the loglinearized model is appropriate. On the other hand, if one is interested also in the

size of the effects, then the simulation approach is the appropriate tool. It remains to determine the

relationship between the two approaches. To what extent does the loglinear approach understate or

overstate the results of a change in the capital tax? In Table 6.5 we present the results from such a

comparison. The entries in the table refer to elasticities, e.g., according to column (a), a 1 percent increase

in tKX leads to a reduction in X of 0.292 percent. Column (a) presents the effects predicted by the

loglinear model. Because the model is loglinear, the size of the shock that is administered does not

matter, i.e. the predicted elasticities are the same for a shock of ∆tKX = 0.01 and one of ∆tKX = 0.50.

Column (b) presents the results predicted by the nonlinear simulation model for a small shock, i.e.



194 PUBLIC ECONOMICS: TOOLS AND TOPICS

(a) (b) (c) (d) (e)
linearized exact exact exact exact

∆tKX = 0.01 0.10 0.25 0.50
Variable
X̃ − Ỹ −0.548 −0.543 −0.501 −0.443 −0.373

(0.9) (9.4) (23.5) (46.8)
X̃ −0.292 −0.290 −0.275 −0.254 −0.225

(0.6) (6.0) (15.0) (29.7)
Ỹ 0.256 0.254 0.237 0.213 0.182

(0.8) (7.9) (20.0) (40.6)
P̃X 0.365 0.363 0.348 0.326 0.295

(0.5) (4.9) (12.0) (23.9)
W̃ − R̃ 0.640 0.638 0.615 0.579 0.526

(0.4) (4.2) (10.7) (21.8)
W̃ 0.272 0.270 0.255 0.232 0.201

(0.7) (7.0) (17.5) (35.2)
R̃ −0.368 −0.365 −0.339 −0.303 −0.257

(0.9) (8.6) (21.5) (43.3)
T̃ 0.121 0.119 0.109 0.092 0.072

(1.2) (12.2) (31.8) (67.8)
M̃ 0.171 0.169 0.156 0.138 0.114

(0.9) (9.4) (24.0) (49.4)

Table 6.5: Approximate and exact elasticities

the introduction of a 1 percent capital tax (∆tKX = 0.01). The comparison of columns (a) and (b) reveals

what is to be expected: the loglinear model gives virtually identical results as the nonlinear model does.

For small changes the loglinear model is fine. The figures in round brackets underneath the elastici-

ties quantify the size of the approximation error. For variable z, the approximation error is defined as

follows:

err (z) ≡

∣
∣
∣
∣

zE − zA

zE

∣
∣
∣
∣
× 100%, (A5.129)

where zE and zA are, respectively, the exact and approximate solutions for z. As column (b) reveals,

for a 1 percent shock, the approximation error of the loglinear model amounts to 0.6 percent for X, 0.7

percent for W, and 1.2 percent for T.

Columns (c)-(e) present the results for the nonlinear model for larger shocks. For example, column

(e) shows the results of an introduction of a huge capital tax (∆tKX = 0.50). The comparison between

columns (e) and (a) reveals that the results are qualitatively the same (signs are identical) but quantita-

tively rather different. Indeed, the approximation error is 21.8 percent for W/R, and a whopping 67.8

percent for the tax revenue T! Comparing across columns, one observes that, for the particular model

under consideration, the approximation error is roughly linear in the shock, i.e. err (z) ≈ γz∆tKX.
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6.5 Monopolistic competition

Up to this point attention has been restricted to the standard two-by-two model first formulated by

Harberger (1962). In the remainder of this chapter we investigate how robust the standard approach

is to deviations from its basic assumptions. Two of the most crucial assumptions are, first, that the

market structure is one of perfect competition throughout the economy and, second, that all markets

are in equilibrium (clearing markets). In this section we challenge the first of these assumptions by

including an imperfectly competitive production sector in the model. In the next section, the second

crucial assumption is challenged by incorporating an imperfection in the labour market which gives

rise to a positive unemployment rate.

In this section we study a relatively simple general equilibrium model, due to Atkinson and Stiglitz

(1980, pp. 208-217), in which there is monopolistic competition in one sector of the goods market. The

modelling approach is based on the classic paper by Dixit and Stiglitz (1977).15 As in the basic Har-

berger model, the economy consists of two sectors of production. Whilst the Y-sector is characterized

by perfect competition, there is, however, monopolistic competition in the X-sector, i.e. the small firms

populating that sector each possess a little bit of market power. In the X-sector a differentiated product is

manufactured. Each “slightly different” variety of the good is sold by a single firm with some (but not

much) market power under conditions of increasing returns to scale at firm level. Exit/entry of firms

drives excess profits to zero. In the Y-sector a homogeneous good is produced by a representative price-

taking firm facing a constant returns to scale technology (just as in the basic Harberger-Jones model

studied above).

6.5.1 Households

The representative household has the following utility function:

U = ZαX Y1−αX , 0 < αX < 1, (A5.130)

where U is utility, Y is consumption of the homogeneous good, and Z is the consumption of a composite

differentiated good. To keep the model as simple as possible, the utility function is Cobb-Douglas, i.e.

the substitution elasticity between Z and Y is equal to unity (in the notation used above, σD = 1).

The composite differentiated good consists of a bundle of closely related product “varieties” which

are close but imperfect substitutes for each other:

Z ≡

[
N

∑
i=1

X
(σV−1)/σV
i

]σV /(σV−1)

, 1 < σV ≪ ∞, (A5.131)

15For technical background on the Dixit-Stiglitz model, see Heijdra and van der Ploeg (2002, pp. 360-367). See also Brakman
and Heijdra (2004) for an extensive discussion of this influential model.
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where N is the existing number of different varieties (N is assumed to be large), Xi is consumption of

variety i, σV is the Allen-Uzawa cross-partial elasticity of substitution between any Xi and any other Xj.

Intuitively, the higher is σV , the better substitutes the varieties are for each other, i.e. the less differenti-

ated the good is.

The household budget constraint is:

N

∑
i=1

PiXi + PYY = M, (A5.132)

where Pi is the price of variety i, PY is the price of good Y, and M is household income (see below). The

household chooses Y and Xi (for i = 1, · · · , N) in order to maximize (A5.130), subject to the definition

(A5.131) and the budget constraint (A5.132), taking as given the goods prices and its income. Two-stage

budgeting yields the following solutions:16

Z = αX
M

PZ
, (A5.133)

Y = (1 − αX)
M

PY
, (A5.134)

Xi = αX

(
Pi

PZ

)−σV M

PZ
, (i = 1, · · · , N), (A5.135)

where PZ is the true price index of the composite consumption good Z:

PZ ≡

[
N

∑
i=1

P1−σV
i

]1/(1−σV)

. (A5.136)

Intuitively, PZ represents the price of one unit of Z given that the quantities of all varieties are chosen

in an optimal (utility-maximizing) fashion by the household. Notice that (A5.133)-(A5.134) show that

income spending shares of Z and Y are constant for the Cobb-Douglas utility function. Finally, (A5.135)

is the demand curve facing the producer of variety i. It features a constant price elasticity (in absolute

value) which is equal to σV–see also equation (A5.142) below.

6.5.2 Firms

The representative firm in the Y-sector is the same as in the standard model. In the absence of taxes, the

firm’s technology is represented by the following cost function:

Cy ≡ cy (W, R)Y, (A5.137)

16See Intermezzo 3.1 above for a detailed discussion of the method of two-stage budgeting.
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where Cy is total cost, cy is unit-cost, W is the wage rate, R is the rental price on capital, and Y is output.

The conditional factor demands are thus given by:

LY = c
y
W (W, R)Y, (A5.138)

KY = c
y
R (W, R)Y, (A5.139)

where c
y
W ≡ ∂cy/∂W and c

y
R ≡ ∂cy/∂R are the unit input coefficients. The firm operates under perfect

competition so its pricing decision is given by:

PY = cy (W, R) . (A5.140)

The price equals marginal (and average) cost: there are no fixed costs and pure profits are zero.

In the X-sector each producer of variety i faces a price-elastic demand for its own good given in

(A5.135) above. The inverse demand function (relating Pi to Xi) can be determined by using (A5.133)

and (A5.135):

Pi =
αX MZ(σV−1)/σV

X1/σV
i

. (A5.141)

Ceteris paribus household income, M, and composite consumption, Z, this demand curve features a

constant price elasticity denoted by εi:

εi ≡ −
∂ ln Xi

∂ ln Pi
= σV . (A5.142)

In order to operate at all, the firm must incur fixed costs, i.e. costs not related to scale of produc-

tion. For example, it must have an administrative office which utilizes labour and/or capital to provide

services to the firm. The cost function associated with the maintenance of the office is:

Co = co (W, R) , (A5.143)

where co (W, R) is the unit cost of an office (and we note that only one office is needed per firm). Firm

i’s derived input demands arising from fixed costs are thus equal to:

LOi = co
W (W, R) , (A5.144)

KOi = co
R (W, R) . (A5.145)

In order to manufacture its output, the firm must also incur variable production costs. The variable cost
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function is:

Cx = cx (W, R) Xi, (A5.146)

and the derived factor demands are given by:

LXi = cx
W (W, R) Xi, (A5.147)

KXi = cx
R (W, R) Xi. (A5.148)

Profit of firm i is denoted by Πi and equals revenue minus total costs (i.e. the sum of variable cost

and fixed cost):

Πi ≡ Pi (Xi) Xi − Cx − Co

= Pi (Xi) Xi − cx (W, R) Xi − co (W, R) , (A5.149)

where Pi (Xi) is the inverse demand curve for variety Xi (see (A5.141) above). Firm i chooses its output

in order to maximize profit (A5.149), taking as given the input prices (W and R), and operating under

the Cournot-Nash assumption that other producers in the X-sector do not change their production (so

that Z in (A5.141) can be considered constant).17 The first-order condition for profit maximization is:

dΠi

dXi
= Pi + Xi

∂Pi

∂Xi
− cx (W, R) = 0 ⇔

cx (W, R) = Pi

[

1 +
Xi

Pi

∂Pi

∂Xi

]

. (A5.150)

By noting (A5.142) we can simplify (A5.150) and obtain the familiar markup pricing rule:

Pi = µcx (W, R) , (A5.151)

µ ≡
σV

σV − 1
, (A5.152)

where µ (> 1) is the gross markup of price over marginal cost.

The X-sector is characterized by Chamberlinian monopolistic competition and free entry/exit of firms.

Since all firms are the same, entry/exit occurs until all active firms exactly break even and make zero

profit:

Πi = 0, for i = 1, 2, · · · , N. (A5.153)

By using the pricing rule (A5.151) and the profit function (A5.149) in (A5.153) we obtain the condition

17In addition, the firm also ignores the effect its own production level (Xi) has on the magnitude of Z. This assumption is
justified by noting that the number of firms (N) is assumed to be large so that Xi is only a very small part of Z.
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determining individual equilibrium firm size:

Πi = Pi (Xi) Xi − cx (W, R) Xi − co (W, R)

= Xi [µcx (W, R)− cx (W, R)]− co (W, R)

= Xi (µ − 1) cx (W, R)− co (W, R) = 0, (A5.154)

or:

Xi =
co (W, R)

(µ − 1) cx (W, R)
. (A5.155)

According to (A5.155), optimal equilibrium firm size is the same for all active firms (because co, cx, and

µ are the same), increasing in fixed cost (co), decreasing in unit variable cost (cx), and decreasing in µ

(i.e. increasing in σV).

The model is completely symmetric, i.e. for i = 1, · · · , N we have:

Pi = PX , LXi = L̄X , LOi = L̄O,

Xi = X̄, KXi = K̄X , KOi = K̄O,
(A5.156)

and the model can be studied in aggregate terms. Finally, we need to tie up some loose ends. First, in

the symmetric equilibrium the factor market clearing conditions are given by:

L̄ = N (L̄X + L̄O) + LY,

= cx
W (W, R) NX̄ + Nco

W (W, R) + c
y
W (W, R)Y, (A5.157)

K̄ = N (K̄X + K̄O) + KY,

= cx
R (W, R) NX̄ + Nco

R (W, R) + c
y
R (W, R)Y. (A5.158)

Second, since there are no excess profits and no taxes, household income is simply equal to factor pay-

ments:

M = WL̄ + RK̄. (A5.159)

The model consists of the demand equations (A5.133)-(A5.134), the pricing equations (A5.140) and

(A5.151), the expression for the individual firm size (A5.155), the factor market clearing conditions

(A5.157)-(A5.158), and the income definition (A5.159). The endogenous variables are X̄, Y, PX , PY, W, R,

and N. The exogenous variables are K̄ and L̄, and µ is a structural parameter. As in the basic Harberger-

Jones model, Walras’ Law implies that one equation is redundant and that only the relative price (PX/PY)

is determined within the model.
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6.5.3 Tax incidence in the monopolistic competition model

In this subsection we demonstrate some of the properties of the monopolistic competition model by

performing a small-scale tax policy analysis. In the interest of brevity we only consider two tax instru-

ments, both impacting on the firms in the differentiated sector. First, we assume that the use of capital

for production purposes is taxed at rate tKX. Second, we assume that the policy maker wishes to subsi-

dize fixed costs in the X-sector, say to stimulate small-scale “entrepreneurship” in the economy. It does

so by subsidizing the use of overhead capital at rate sKO. No other taxes or subsidies exist.

The modified general equilibrium model consists of the following equations:

L̄ = cx
W (W, R (1 + tKX)) X + Nco

W (W, R (1 − sKO)) + c
y
W (W, R)Y, (A5.160)

K̄ = cx
R (W, R (1 + tKX)) X + Nco

R (W, R (1 − sKO)) + c
y
R (W, R)Y, (A5.161)

PX = µcx (W, R (1 + tKX)) , (A5.162)

PY = cy (W, R) , (A5.163)

PXX = αX [WL̄ + RK̄ + T] , (A5.164)

PYY = (1 − αX) [WL̄ + RK̄ + T] , (A5.165)

X̄ =
X

N
=

co (W, R (1 − sKO))

(µ − 1) cx (W, R (1 + tKX))
, (A5.166)

T ≡ tKXRcx
R (W, R (1 + tKX)) X − sKORNco

R (W, R (1 − sKO)) , (A5.167)

where X ≡ NX̄ is “aggregate” output in the X-sector and T is the tax revenue which is recycled in

a lump-sum fashion to households. The capital tax, tKX, affects (i) factor demands for production

purposes in equations (A5.160) and (A5.161), (ii) marginal production cost in equations (A5.162) and

(A5.166), and (iii) tax revenue in (A5.167). The subsidy, sKO, affects (i) factor demands for overhead pur-

poses in equations (A5.160) and (A5.161), (ii) unit fixed costs in equation (A5.166), and (iii) tax revenue

in (A5.167).

As before, we restrict attention to the relative effects of the capital tax and the fixed cost subsidy.

Following similar steps as before the model can be loglinearized. By dividing (A5.164) by (A5.165) and

loglinearizing we find the expression for relative demand:

X̃ − Ỹ = −
[
P̃X − P̃Y

]
. (A5.168)

The pricing equations (A5.162)-(A5.163) are loglinearized as follows:

P̃X = θLXW̃ + θKX

[
R̃ + t̃KX

]
, (A5.169)

P̃Y = θLYW̃ + θKY R̃, (A5.170)
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where we have incorporated the fact that the gross markup is constant (so that µ̃ = 0), t̃KX ≡ dtKX/ (1 + tKX),

and the θji coefficients are defined as follows:

θLX ≡
Wcx

W

cx
, θKX ≡

R (1 + tKX) cx
R

cx
= 1 − θLX, (A5.171)

θLY ≡
Wc

y
W

cy , θKY ≡
Rc

y
R

cy = 1 − θLY. (A5.172)

By deducting (A5.172) from (A5.171) we obtain the expression for the relative goods price:

P̃X − P̃Y = θ∗
[
W̃ − R̃

]
+ θKX t̃KX, (A5.173)

where θ∗ is defined as:

θ∗ ≡ θLX − θLY = θKY − θKX > 0. (A5.174)

In (A5.174) we have incorporated the assumption (also made in the standard Harberger-Jones model)

that production activities in the X-sector are relatively labour intensive.

By loglinearizing the expression for optimal equilibrium firm size, equation (A5.166), we obtain:

˜̄X = c̃o − c̃x, (A5.175)

where c̃x = P̃X (by (A5.162) and the constancy of the gross markup) and c̃o is defined as follows:

c̃o = θLOW̃ + θKO

[
R̃ − s̃KO

]
, (A5.176)

where s̃KO ≡ dsKO/ (1 − sKO), and where θLO and θKO are defined as follows:

θLO ≡
Wco

W

co
, θKO ≡

R (1 − sKO) co
R

co
= 1 − θLO. (A5.177)

In equation (A5.176), θLO measure the labour intensity of fixed cost in terms of factor shares. By substi-

tuting equation (A5.176) into (A5.175) and noting c̃x = P̃X and (A5.169) we find:

˜̄X = −η∗
[
W̃ − R̃

]
− θKX t̃KX − θKO s̃KO, (A5.178)

where η∗ is defined as follows:

η∗ ≡ θLX − θLO = θKO − θKX > 0. (A5.179)

In equation (A5.179) we have incorporated the assumption that variable (production) cost is relatively

labour intensive compared to fixed (overhead) cost in terms of factor shares. It follows from (A5.178)
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that an increase in W/R leads to a decrease in individual firm size. Furthermore, ceteris paribus W/R,

an increase in the capital tax increases marginal production cost and reduces equilibrium firm size. Simi-

larly, an increase in the fixed cost subsidy leads to a decrease in fixed cost and a reduction in equilibrium

firm size.

It remains to derive the loglinearized factor market equilibrium conditions. After some manipulation

we obtain from (A5.160) and (A5.161):

˜̄L = λLX

[
X̃ + c̃x

W

]
+ λLY

[

Ỹ + c̃
y
W

]

+ λLO

[
Ñ + c̃o

W

]
, (A5.180)

˜̄K = λKX

[
X̃ + c̃x

R

]
+ λKY

[

Ỹ + c̃
y
R

]

+ λKO

[
Ñ + c̃o

R

]
, (A5.181)

where the λ-coefficients are defined as:

λLX ≡
NL̄X

L̄
, λLY ≡

LY

L̄
, λLO ≡

NL̄O

L̄
, (A5.182)

λKX ≡
NK̄X

K̄
, λKY ≡

KY

K̄
, λKO ≡

NK̄O

K̄
, (A5.183)

1 = λLX + λLY + λLO = λKX + λKY + λKO, (A5.184)

and where the loglinearized unit input coefficients are given by:

c̃x
W = −θKXσX

[
W̃ − R̃ − t̃KX

]
, (A5.185)

c̃
y
W = −θKYσY

[
W̃ − R̃

]
, (A5.186)

c̃x
R = θLXσX

[
W̃ − R̃ − t̃KX

]
, (A5.187)

c̃
y
R = θLYσY

[
W̃ − R̃

]
, (A5.188)

c̃o
W = −θKOσO

[
W̃ − R̃ + s̃KO

]
, (A5.189)

c̃o
R = θLOσO

[
W̃ − R̃ + s̃KO

]
. (A5.190)

In equations (A5.189)-(A5.190), the parameter σO denotes the substitution elasticity between capital and

labour in fixed cost. For a given wage-rental ratio, W/R, an increase in the fixed cost subsidy induces

firms in the differentiated sector to substitute capital for labour in the production of overhead services.

By substituting (A5.185)-(A5.190) in the relevant places in (A5.180)-(A5.181) we obtain:

˜̄L = λLXX̃ + λLYỸ + λLOÑ + λLXθKXσX t̃KX − λLOθKOσO s̃KO

− [λLXθKXσX + λLYθKYσY + λLOθKOσO]
[
W̃ − R̃

]
, (A5.191)

and:

˜̄K = λKXX̃ + λKYỸ + λKOÑ − λKXθLXσX t̃KX + λKOθLOσO s̃KO
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+ [λKXθLXσX + λKYθLYσY + λKOθLOσO]
[
W̃ − R̃

]
. (A5.192)

Finally, by deducting (A5.192) from (A5.191) we get:

˜̄L − ˜̄K = λ∗
[
X̃ − Ỹ

]
+ µ∗ ˜̄X − σ∗

[
W̃ − R̃

]
+ aXσX t̃KX − aOσO s̃KO, (A5.193)

where we have used the fact that Ñ = X̃ − ˜̄X, λLX + λLO = 1 − λLY, and λKX + λKO = 1 − λKY. The

composite parameters, λ∗, µ∗, σ∗, aX , aY, and aO are defined as follows:

λ∗ ≡ λKY − λLY = (λLX + λLO)− (λKX + λKO) > 0, (A5.194)

µ∗ ≡ λKO − λLO > 0, (A5.195)

σ∗ ≡ aXσX + aYσY + aOσO > 0, (A5.196)

aX ≡ λLXθKX + λKXθLX > 0, (A5.197)

aY ≡ λLYθKY + λKYθLY > 0, (A5.198)

aO ≡ λLOθKO + λKOθLO > 0. (A5.199)

In equation (A5.194) we have already incorporated the assumption that the Y-sector is relatively capital

intensive, i.e. that the X-sector as a whole (including production and overhead factors) is relatively

labour intensive (both measured in physical units). Furthermore, in (A5.195) it is assumed that fixed

cost are relatively capital intensive (in terms of physical units).

For future purposes we restate the key equations of the loglinearized model in its most convenient

format:

X̃ − Ỹ = −θ∗
[
W̃ − R̃

]
− θKX t̃KX, (A5.200)

λ∗
[
X̃ − Ỹ

]
=
[

˜̄L − ˜̄K
]

+ [η∗µ∗ + σ∗]
[
W̃ − R̃

]

+ [µ∗θKX − aXσX ] t̃KX + [µ∗θKO + aOσO] s̃KO. (A5.201)

Equation (A5.200) is obtained by combining the relative demand equation (A5.168) with the relative

pricing rule equation (A5.173). It thus expresses relative demand in terms of relative factor prices (W/R)

rather than the relative goods price (PX/PY). In view of the assumptions made (θ∗ > 0, λ∗
> 0, η∗

> 0,

and µ∗
> 0), it follows that the relative demand curve slopes down–see the DPR curves in Figures 6.8-

6.10. Equation (A5.201) is obtained by substituting (A5.178) into the relative factor market equilibrium

condition (A5.193). This equation has been labeled FME in Figures 6.8-6.10.
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6.5.3.1 Fixed cost subsidy

In Figure 6.8 the effect of an increase in the fixed cost subsidy is illustrated, i.e. s̃KO > 0 and t̃KX = 0.

In that figure, the original relative demand curve (A5.168) is plotted in the top right-hand panel (the

D curve) and the expression for equilibrium firm size (A5.178) is plotted in the bottom left-hand panel

(the FS curve). As a result of the shock, the DPR curve (A5.200) stays put and the FME curve (A5.201)

shifts up, say from FME0 to FME1. The equilibrium shifts from E0 to E1, the relative demand for X rises,

and both W/R and PX/PY fall. It follows from (A5.178) that, for a given value of W/R, an increase in

the fixed cost subsidy reduces the equilibrium firm size, i.e. in terms of Figure 6.8 the FS curve shifts

up, say from FS0 to FS1. There are clearly two offsetting effects on equilibrium firm size. The direct

effect of the subsidy is to decrease firm size (because it reduces fixed cost at a given value of W/R). This

is the move from point A to point B in the bottom left-hand panel. As a result of general equilibrium

interactions, however, the W/R ratio falls which leads to an increase in equilibrium firm size because

fixed cost is capital intensive. This is the move from point B to point C. The figure has been drawn under

the assumption that the direct effect dominates the general equilibrium effect, so that equilibrium firm

size declines. But is that the case? To find out we solve the model mathematically. By using (A5.178)

and (A5.200)-(A5.201) we obtain:

X̃ − Ỹ = −θ∗
[
W̃ − R̃

]
=

θ∗ [µ∗θKO + aOσO]

λ∗θ∗ + η∗µ∗ + σ∗
s̃KO > 0, (A5.202)

˜̄X =

[
η∗ [µ∗θKO + aOσO]

λ∗θ∗ + η∗µ∗ + σ∗
− θKO

]

s̃KO. (A5.203)

The first term within square brackets on the right-hand side of (A5.203) is the general equilibrium effect

whilst the second term is the direct effect. Using the definition of η∗ from (A5.179) we find that (A5.203)

can be further simplified to:

˜̄X = −

[
θKO (λ∗θ∗ + aXσX + aYσY) + θKXaOσO

λ∗θ∗ + η∗µ∗ + σ∗

]

s̃KO < 0, (A5.204)

i.e. firm size declines unambiguously.

6.5.3.2 Capital tax

The effects of an increase in the corporate tax (t̃KX > 0) are illustrated in Figure 6.9. By setting s̃KO =

˜̄L = ˜̄K = 0 we find that (A5.201) is simplified to:

λ∗
[
X̃ − Ỹ

]
= [η∗µ∗ + σ∗]

[
W̃ − R̃

]
+ [µ∗θKX − aXσX ] t̃KX. (A5.205)

In the top right-hand panel, the tax shock shifts the DPR curve (A5.200) down, say from DPR0 to DPR1.

The effect on the FME curve (A5.205) is ambiguous as it is determined by the interplay between an
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Figure 6.8: Increase in the fixed cost subsidy sKO under monopolistic competition

output effect (µ∗θKX) and a factor substitution effect (−aXσX). In the diagram it is assumed that the

latter effect dominates the former effect (aXσX > µ∗θKX) so that the FME curve shifts down, say from

FME0 to FME1. The equilibrium shifts from E0 to E1 and (for the case drawn) X/Y falls whilst W/R

rises. Mathematically, the comparative static effects obtained from equations (A5.200) and (A5.205) are:

X̃ − Ỹ = −

[
θKX [η∗µ∗ + σ∗] + θ∗ [aXσX − µ∗θKX]

λ∗θ∗ + η∗µ∗ + σ∗

]

t̃KX R 0, (A5.206)

W̃ − R̃ =

[
−λ∗θKX + [aXσX − µ∗θKX ]

λ∗θ∗ + η∗µ∗ + σ∗

]

t̃KX R 0. (A5.207)

In the bottom left-hand panel of Figure 6.9, the FS curve (A5.178) shifts up, say from FS0 to FS1. Not

surprisingly, in view of the fact that the effect on W/R cannot be signed unambiguously, the effect on

the equilibrium firm size is also ambiguous. Indeed, by using (A5.207) in (A5.178) we find:

˜̄X =

[
λ∗η∗θKX − η∗ [aXσX − µ∗θKX ]

λ∗θ∗ + η∗µ∗ + σ∗

]

t̃KX − θKX t̃KX R 0. (A5.208)

In the bottom left-hand panel of Figure 6.9, the direct effect is the move from point A to point B and the

induced general equilibrium effect is the move from point B to point C. In the case drawn, the direct

effect dominates and equilibrium firm size falls as a result of the capital tax.

6.5.3.3 Combined shock

Up to this point we have implicitly assumed that the tax authority can distinguish between the firm’s

use of capital for production purposes (K̄X) and for overhead purposes (K̄O). This is clearly a heroic

assumption. Following Atkinson and Stiglitz (1980, pp. 213-216), we now consider the case in which the
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Figure 6.9: Increase in the corporate tax tKX under monopolistic competition

capital tax applies to all capital used in the X-sector. In our model this amounts to setting sKO = −tKX

so that s̃KO = −t̃KX. By using this result in (A5.200)-(A5.201) and (A5.178) we find that the general

equilibrium effects of a marginal change in the capital tax rate are given by:

X̃ − Ỹ = −
θKX [η∗µ∗ + σ∗] + θ∗ [η∗µ∗ + aXσX + aOσO]

λ∗θ∗ + η∗µ∗ + σ∗
t̃KX < 0, (A5.209)

W̃ − R̃ =
−λ∗θKX + η∗µ∗ + aXσX + aOσO

λ∗θ∗ + η∗µ∗ + σ∗
t̃KX R 0, (A5.210)

˜̄X = −
λ∗θKY + aYσY

λ∗θ∗ + η∗µ∗ + σ∗
t̃KX < 0. (A5.211)

In terms of Figure 6.10, an increase in the capital tax (t̃KX > 0) shifts both the FME and DPR curves (from,

respectively, FME0 to FME1 and from DPR0 to DPR1). The effect on X/Y is unambiguously negative

(see (A5.209)) but the effect on the W/R ratio is ambiguous (see (A5.210)). Despite this ambiguity, the

equilibrium firm size rises as a result of the tax increase (see (A5.211)). As Atkinson and Stiglitz (1980,

p. 216) point out, the increase in firm scale can be interpreted as an increase in industrial concentration.

6.5.4 Concluding remarks

This subsection has demonstrated that it is quite feasible to construct a fully tractable general equilib-

rium model with monopolistic competition in the goods market. The tractability is attributable to the

analytical simplifications built into the Dixit-Stiglitz framework employed in the model. The key sim-

plifications are (i) the very specific functional form for preferences (in (A5.131)) leading to the simple

variety demand functions (A5.135), and (ii) the Cournot-Nash assumption with respect to producer be-

haviour in the X-sector. Since the model is based on such very special assumptions, it cannot be easily
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Figure 6.10: Taxing all capital in the X-sector

generalized. Clearly, the monopolistic competition model does capture some aspects of imperfect com-

petition rather well (such as the existence of firm-level scale economies and price setting behaviour).

It cannot, however, capture the small-group oligopolistic interactions that may be important in some

sectors in the economy. A general equilibrium version of the conjectural variations oligopoly model

(discussed in Chapter 5 above) may be better suited in that case.

6.6 Labour market frictions and unemployment

In this subsection the emphasis shifts from the goods market to the labour market. Recall that the origi-

nal Harberger-Jones model assumes perfectly competitive behaviour on all market as well as flexibility

of all prices of goods and production factors. In this subsection we study the implications of labour

market frictions and unemployment in the context of a two-sector Harberger-Jones model.

Although there are many different ways of modeling labour market frictions, here we wish to fo-

cus on the idea of dual labour markets and efficiency wages.18 The basic dual labour market idea was

formulated by Doeringer and Piore (1971). There are two sectors in the economy, namely a high-wage

primary sector and a low-wage secondary sector. In the primary sector workers occupy the attractive jobs:

employment is stable, there are good provisions for training, jobs involve skilled work and workers are

allowed to carry responsibility. In contrast, in the secondary sector the unattractive jobs are located:

there is only casual attachment between firm and worker, work is mostly unskilled, and there are little

training or promotion opportunities.

18See Heijdra and van der Ploeg (chs. 7-9) for an extensive survey of the different labour market approaches. The efficiency
wage model is discussed in detail in Weiss (1991).
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Figure 6.11: Wage differential in a dual labour market

The dual labour market notion can be explained further with the aid of Figure 6.11. In that figure,

the given supply of labour (L̄) is equal to the horizontal distance OYOX . Labour demand in the (pri-

mary) Y-sector is measured relative to OY on the horizontal axis from left to right. Labour demand in

the (secondary) X-sector is measured with respect to OX , i.e. from right to left on the horizontal axis.

The respective labour demand curves are denoted by LD
Y (·) and LD

X (·) and the wage rates are mea-

sured on the right-hand axis for WX and on the left-hand axis for WY. Note that the figure is only a

partial equilibrium representation in that goods prices and the capital stocks in the two sectors are held

constant.19

With full mobility of labour and a flexible wage rate, equilibrium is attained at point E, where the

wage rate in the two sectors is equal (at W = WY = WX) and there is full employment of labour. If the

wage is too high and inflexible, say at the level W = W0
X and labour is fully mobile, then the equilibrium

is at point C for the Y-sector and at point B for the X-sector. There is unemployment represented by the

horizontal distance CB. This still does not capture the notion of a dual labour market, however, because

the wage rate is the same in both sectors. What is needed is some other kind of labour market friction.20

Following Bulow and Summers (1986) and Shapiro and Stiglitz (1984), we explain the joint occur-

rence of unemployment and a persistent wage differential (between identical workers) by appealing to

the notion of efficiency wages. In particular, we assume that the cost of supervising workers differs be-

tween the two sectors. In the primary sector supervision is costly and firms pay a wage premium to

19Indeed, the labour demand functions appearing in Figure 6.11 are defined implicitly by Wi = Pi∂Fi (Li , Ki) /∂Li , where
Fi (Li , Ki) is the production function in sector i (for i = X, Y).

20McDonald and Solow (1985) introduce a quantity restriction (fixed union membership) and assume that the Y-sector is union-
ized. In terms of Figure 6.11, union membership is equal to OYH, the union picks point A and sets the wage at W0

Y . Unemployment
in the Y-sector equals GH. In the secondary sector labour supply equals OXH, the wage is flexible and the equilibrium is at point
J. There is both a wage differential and unemployment.
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induce effort (the so-called shirking model). In contrast, in the secondary sector supervision is easy and

wages are competitive.

The basic model used in this subsection is due to Atkinson (1994). The following key assumptions

are made. First, the goods markets are competitive and capital is perfectly mobile across sectors so that

its rental rate is the same in both sectors. Second, workers are identical and risk-neutral, i.e. we continue

to assume homothetic preferences. Third, in order to keep the model as simple as possible, technology

is assumed to feature fixed coefficients, i.e. the substitution elasticities in the two sectors are both zero

(σX = σY = 0). Fourth, the model is static and the labour market reconvenes at the start of each period.

From an ex ante perspective, labour is fully mobile across sectors. At the beginning of each period,

workers must choose between two options. Option 1 is to accept a job in the secondary sector at the

going wage rate WX. Option 2 is to enter the primary sector and join a “queue of workers” waiting

for a job in that sector. Only a fraction of the workers in the queue obtain a job (at wage rate WY which

exceeds WX) while the rest of them remain unemployed (they cannot turn around and join the secondary

sector by assumption!). Since the workers are risk neutral, the decision between the two options is such

that the expected wage obtained by joining the queue equals the certain wage in the secondary sector. In

terms of Figure 6.11, OXI is employment in the secondary sector, OYI is the queue in the primary sector,

OYG primary sector workers are employed and GI workers are unemployed. The model determines

endogenously both the location of points I and G and wages in the two sectors.

6.6.1 The intersectoral wage premium

In the primary sector there are two possible effort levels by the worker, namely E = 0 (no effort, the

worker is “shirking” on the job) and E = Ē (the worker is expending full effort). In the secondary sector

there is no cost of supervision and worker effort always equals Ē. The cost of supervision in the primary

sector is high and firms pay a wage premium (over and above the wage in the secondary sector) in

order to induce worker effort Ē. Only intermittently the firm engages in monitoring of its workers. Any

worker caught shirking is fired and takes a job in the secondary sector during the current period.

The cost of exerting effort Ē (in monetary terms) equals PE for the worker. Any worker employed

in the primary sector faces a positive (and exogenous) probability, q, of being monitored by the firm

(with 0 < q < 1). The worker in the primary sector thus faces the following options: (a) exert effort

Ē and obtain a net-of-effort wage WY − PE for sure, or (b) exert no effort (E = 0) and obtain WY with

probability 1 − q and WX − PE with probability q (shirking is impossible in the secondary sector so that

the net-of-effort wage, WX − PE, is relevant). A primary sector worker exerts effort Ē provided option

(a) is preferred to option (b), or:

WY − PE ≥ (1 − q)WY + q (WX − PE) ⇔

WY ≥ WX + PE
1 − q

q
. (A5.212)
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This is the so-called no-shirking condition. Firms in the primary sector know the effort-inducing condition

(A5.212) and set WY such that the high-effort level, Ē, is just guaranteed:

WY = WX + PE
1 − q

q
. (A5.213)

According to (A5.213), the effort-inducing wage premium is an increasing function of the pecuniary cost

of effort, PE, and a decreasing function of the monitoring probability, q.

Workers queue for jobs in the primary sector. In that sector there are V vacancies at the beginning

of each period and there are U unemployed job seekers so that the probability of finding a job in the

primary sector is equal to V/U. We assume that U > V > 0 so that 0 < V/U < 1, i.e. the probability

of finding a job is positive but less than unity. Workers are indifferent between certain secondary em-

ployment and joining the queue in the primary sector provided the expected net-of-effort reward is the

same:

WX − PE =
V

U
(WY − PE) +

[

1 −
V

U

]

× 0 ⇔

WX =
V

U
WY +

[

1 −
V

U

]

PE. (A5.214)

The expression in (A5.214) governs the intersectoral allocation of labour.21

The process of job destruction and vacancy creation is as follows. At the start of each period a random

fraction, sLY, of all primary sector jobs is destroyed and the same number of vacancies is created. This

implies, of course, that as far as job destruction is concerned LY stays the same and that new vacancies

are given by:

V = sLY, (A5.215)

where s is the exogenous job destruction rate. The labour market “equilibrium” condition is given by:

L̄ = U + LX + LY, (A5.216)

where L̄ is the total labour force, LX and LY represent employment in, respectively the X-sector and the

Y-sector, and U is unemployment. By using (A5.215) and (A5.216) we find:

V

U
=

sLY

L̄ − (LX + LY)
, (A5.217)

where V/U is an index of labour market tightness. The higher is V/U, the easier it is for workers to

find a job in the primary sector.

21Note that we abstract from unemployment benefits altogether, i.e. an unemployed worker receives nothing.
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6.6.2 Remainder of the model

As was pointed out above, the model abstracts from factor substitutability, i.e. there are fixed input

coefficients in both sectors. The Y-sector is relatively capital intensive and the cost functions in the two

sectors are given by:

Cx = cx (WX, R) X, (A5.218)

Cy = cy (WY, R)Y, (A5.219)

where WX and WY are the wage rate in, respectively, the X-sector and the Y-sector, and R is the common

rental rate on capital. The conditional factor demands are thus:

LX =
∂cx (WX, R)

∂WX
X = cx

W X, (A5.220)

KX =
∂cx (WX, R)

∂R
X = cx

RX, (A5.221)

LY =
∂cy (WY, R)

∂WY
Y = c

y
WY, (A5.222)

KY =
∂cy (WY, R)

∂R
Y = c

y
RY, (A5.223)

where the ci
j coefficients are fixed. Firms in both sectors operate under perfect competition and the

pricing equations are thus based on marginal costs:

PX [= cx (WX , R)] = cx
WWX + cx

RR, (A5.224)

PY [= cy (WY, R)] = c
y
WWY + c

y
RR, (A5.225)

where we have used the linear homogeneity of the unit cost functions to get from the first to the second

equality.

The factor market clearing conditions are given by:

K̄ = cx
RX + c

y
RY, (A5.226)

L̄ − U = cx
W X + c

y
WY, (A5.227)

where (A5.226) is the capital market equilibrium condition and (A5.227) is the labour market equilibrium

condition in the presence of non-zero unemployment. By using (A5.217) and (A5.222) we can relate

unemployment to output in the primary sector and the labour market tightness variable:

U = L̄ − (LX + LY) ,

= s
U

V
LY,
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= s
U

V
c

y
WY, (A5.228)

so that (A5.227) can be expressed as:

L̄ = cx
W X +

[

1 + s
U

V

]

c
y
WY, (A5.229)

If unemployment were zero, this expression would be a standard labour market equilibrium condition

(like equation (6.14) above).

Households have homothetic preferences and the aggregate demands for the two goods are as given

in the standard:

X = dx (PX , PY) M, (A5.230)

Y = dy (PX , PY) M, (A5.231)

where dx (·) and dy (·) are homogeneous of degree minus one in PX and PY and M is aggregate income:

M = WX LX + WY LY + RK̄. (A5.232)

6.6.3 Payroll tax

In this subsection we study some of the properties of the model by looking at the general equilibrium

effects of a payroll tax in the primary sector. This tax on the use of labour is denoted by tLY. As usual,

the revenue from the tax is recycled in a lump-sum fashion to households. The model consists of equa-

tions (A5.213)-(A5.214), (A5.224), (A5.226), and (A5.229)-(A5.231). The pricing equation in the Y-sector,

(A5.225), is modified to:

PY = c
y
WWY (1 + tLY) + c

y
RR. (A5.233)

The payroll tax increases the cost of labour in the primary sector and thus increases the goods price in

that sector. (It does not induce a capital-labour substitution effect because σY = 0 by assumption.)

The household income definition (A5.232) becomes:

M = WXcx
W X + WYc

y
WY + RK̄ + T, (A5.234)

where T is lump-sum transfers from the government:

T ≡ tLYWYc
y
WY. (A5.235)

The endogenous variables of the model X, Y, PX , PY, WX, WY, R, M, T and V/U. Exogenous are K̄ and
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Figure 6.12: Harberger model with efficiency wages and unemployment

L̄ and the constant parameters are cx
W , c

y
W , cx

R, c
y
R, PE, q, and s. By the Law of Walras, one equation is

redundant and we can only determine relative prices.

The model can be represented graphically by means of Figure 6.12. In the top right-hand panel, the D

curve represents the relative demand for good X. It is obtained by dividing (A5.230) by (A5.231), and is

downward sloping under the assumption that the substitution elasticity between X and Y in household

utility is strictly positive (σD > 0). The FME curve in the top left-hand panel represents factor markets

equilibrium in (X/Y, U/V) space. Formally it is derived as follows. First, by solving (A5.226) and

(A5.229) for X and Y we get:

X =
c

y
R L̄ −

(

1 + s U
V

)

c
y
W K̄

c
y
Rcx

W − cx
R

(

1 + s U
V

)

c
y
W

, (A5.236)

Y =
−cx

R L̄ + cx
W K̄

c
y
Rcx

W − cx
R

(

1 + s U
V

)

c
y
W

, (A5.237)

where the denominator is positive by virtue of the assumption regarding the relative capital intensity of

the Y-sector. It follows from (A5.236)-(A5.237) that X/Y can be written as:

X

Y
=

c
y
R L̄ −

(

1 + s U
V

)

c
y
W K̄

cx
W K̄ − cx

R L̄
, (A5.238)

which is downward sloping and linear in U/V.22

The QC curve in the bottom left-hand panel of Figure 6.12 represents the combination of the no-

shirking condition (A5.213) and the expression determining the intersectoral allocation of labour (A5.214)

22We obviously restrict attention to the case where both outputs are positive. It follows from (A5.236)-(A5.237) that the economy-
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in (U/V, WX) space. Formally the QC curve is derived by substituting (A5.213) into (A5.214) and solv-

ing for WX:

WX = PE

[

1 +
1 − q

q

1
U
V − 1

]

. (A5.239)

Equation (A5.239) shows that WX is a hyperbolic downward sloping function of U/V (recall that U/V >

1 by assumption).

Finally, the CPR curve in the bottom right-hand panel of Figure 6.12 represents the combined com-

petitive pricing equations (A5.224) and (A5.233) in (PX/PY, WX) space, using the capital stock as the

numeraire (i.e. R = 1). The formal expression of the CPR curve is obtained by combining (A5.213),

(A5.224), and (A5.233) and setting R = 1:

PX

PY
=

cx
WWX + cx

R

c
y
W (1 + tLY)

[

WX + PE
1−q

q

]

+ c
y
R

. (A5.240)

The slope of the CPR curve is positive:

∂ (PX/PY)

∂WX
=

PYcx
W − PXc

y
W (1 + tLY)

P2
Y

> 0, (A5.241)

where the inequality follows from the assumption regarding the relative capital intensity of the Y-

sector.23 Starting at a given X/Y ratio and completing the boxes we derive the supply curve, S, in

the top right-hand panel of Figure 6.12. The initial equilibrium is at point E0.

The effects of an increase in the payroll tax are illustrated in Figure 6.13. It follows from (A5.240) that

∂ (PX/PY) /∂tLY < 0, i.e. an increase in the payroll tax shifts the CPR curve to the left, say from CPR0 to

CPR1. As a result, the supply curve shifts up, from S0 to S1, and the equilibrium shifts from E0 to E1. As

a result of the shock, X/Y rises, and PX/PY, WX, and U/V fall.

6.7 Punchlines

In this chapter we study the static theory of tax incidence. We start out by demonstrating the incidence of

a consumption tax in the context of a partial equilibrium model. Depending on the slopes of the demand

wide capital-labour ratio must lie in the following interval:

cx
R

cx
W

<
K̄

L̄
<

c
y
R

(
1 + s U

V

)
c

y
W

.

See also Atkinson (1994, p. 284).
23Indeed, the intensity condition is given by θLX ≡ WXcx

W /cx
> WY (1 + tLY) c

y
W /cy ≡ θLY . By noting that PX = cx and PY = cy,

we find:

PYcx
W > PXc

y
W (1 + tLY)

WY

WX
> PXc

y
W (1 + tLY) ,

where the last inequality follows from the fact that WY > WX (see equation (A5.213) above).
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Figure 6.13: The payroll tax in an efficiency wage model

and supply curves, part of the consumption tax is shifted to the owners of the fixed factor (landowners

in the example) and part of it is borne by consumers. The conditions under which the Marshallian

approach to tax incidence is valid are very restrictive. In the two-factor case under consideration, for

example, one factor must be totally elastic in supply and the supply curve of the other factor must be

totally inelastic.

Next we turn to the classic model of Harberger to study tax incidence in a general equilibrium con-

text. The most basic general equilibrium model one can consider features two commodities (goods X

and Y) and two production factors (labour and capital). Technology features constant returns to scale,

factors are perfectly mobile across sectors, prices are flexible, all markets attain equilibrium, and firms

act as perfect competitors on input and output markets. In this “two-by-two” model, outputs, house-

hold income, factor demands, and the relative prices of goods and factors are all determined in general

equilibrium.

In the third section we show how the comparative static effects of small changes in the exogenous

variables can be computed by loglinearizing the two-by-two model around an initial equilibrium. By

focussing on the case of homothetic household preferences, the model can be solved entirely in relative

terms, i.e. in terms of relative output, X/Y, the relative goods price, PX/PY, and the relative wage-rental

rate, W/R. The advantage of this differential approach is that it allows the use of a very simple graphical

apparatus to illustrate the effects.

In the fourth section we introduce a number of different taxes into the two-by-two model and demon-

strate some famous equivalency results between them. Next, we study the general equilibrium tax

effects of small changes in output and factor taxes. In general, a tax change produces both a factor sub-

stitution effect and an output effect. The former refers to a movement along a given isoquant, whereas the
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latter refers to a shift of the isoquant. For large tax changes, the solutions implied by the loglinearized

model are potentially misleading. In such a setting it is more appropriate to base the tax incidence

analysis directly on the nonlinear model. By choosing specific functional forms for preferences and

technology, it is possible to construct a non-linear general equilibrium model which can be calibrated for

an actual economy and subsequently simulated with the aid of a computer. In the calibration phase, the

parameters of the Applied General Equilibrium (AGE) models are typically set at such levels that the

theoretical model mimics the base case for an actual economy. We present a simple example of an AGE

model and show that the approximation error of the loglinearized model gets larger, the larger is the

shock that is administered.

In the last two sections of this chapter we demonstrate how the basic two-by-two model can be

changed in a number of important aspects. In the fifth section it is assumed that one sector in the

economy is characterized by Chamberlinian monopolistic competition. In that sector, many small firms

produce “slightly unique” varieties of a differentiated product and consequently enjoy a small amount

of market power. Technology features increasing returns to scale at the level of the firm, and under

free entry/exit, the equilibrium size of each firm is determined endogenously. We use the monopolistic

competition model to demonstrate the effects of capital taxes and subsidies on relative output, the wage-

rental rate, and equilibrium firm size.

Finally, in the sixth section of this chapter, we shift attention from the goods market to the labour

market. Using a dual labour market model, in which one sector pays efficiency wages to induce worker

effort, we are able to model frictional unemployment as a general equilibrium phenomenon. The key

properties of the efficiency wage model are demonstrated by computing the relative effects of a change

in the payroll tax. The models discussed in the final two sections of this chapter demonstrate the feasi-

bility of tax incidence analysis under non-standard assumptions.

Further reading

• Atkinson and Stiglitz (1980, lectures 6-7), Jha (1998, chs. 11-12), and Myles (1995, ch. 8) on the-

ory. Surveys: Atkinson (1994), Fullerton and Metcalf (2002) on recent theory and empirics on tax

incidence. Kotlikoff and Summers (1987) on theory and empirics on tax incidence.

• Classics: Marshall (1920), Pigou (1947), Harberger (1962), Jones (1965, 1971a, 1971b) Mieszkowski

(1969), McLure (1975), McLure and Thirsk (1975), McLure et al. (1975), Diamond and McFadden

(1974),

• Applied GE models: Shoven and Whalley (1972, 1984, 1992), Ballard, Shoven, Whalley (1985),

• Items from reading list Poterba: Bradford (1978), and Cutler (1988).

• Labour market: Pissarides (1998), Lockwood and Manning (1993), Heijdra and Van der Ploeg
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(2002, chs. 7-9), Summers et al. (1993), Bovenberg and Van der Ploeg (1994), Hoel (1990), Koskela

and Vilmunen (1996) Boone and Bovenberg (2002, 2004).

• Goods market: Atkinson (1994) and Myles (1995, ch. 11) on theory

• Corporate tax and sector definition: non-corporate firms produce same good as corporate firms,

see Gravelle and Kotlikoff (1989).

• Ad hoc stability conditions: Neary (1978)

• Non-traded goods: Jones (1974).

• Tax analysis and oligopoly: Katz and Rosen (1985).

• Two-sector models (without taxes): Doeringer and Piore (1971), McDonald and Solow (1985), Bu-

low and Summers (1986).

Old stuff from old Section 6.5: The basic two-by-two model can easily be extended.

• factor supplies can be made endogenous

– [static] endogenous labour supply [add leisure to household utility function]

– [dynamic] labour supply, saving, and capital accumulation [studied in Chapter 8]

• intersectoral mobility assumption can be augmented:

– [static] Mussa-Neary: labour mobile but capital sector-specific

– [static] McLure: capital mobile but labour sector-specific

– [dynamic] adjustment costs on capital and/or labour

• representative agent model can be replaced by heterogeneous agent model

– now we can also study distribution issues [how do taxes affect different households etc.]

• open economy version of the model

• allow for imperfections on the goods and / or labour market

• using computers we can formulate, calibrate, and run simulations with highly detailed/complex

computable general equilibrium models

– sky is the limit

– information on key elasticities shaky

– scenario analyses
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Chapter 7

Taxation and economic growth

The purpose of this chapter is to discuss the following topics:

• What is the effect of taxation on macroeconomic growth in general equilibrium?

• Exogenous growth models.

– Solow-Swan model: ad hoc savings function.

– Ramsey model: dynamic optimization under perfect foresight.

– Extended Ramsey model: endogenous labour supply.

– Brief aside on two-sector exogenous growth models.

• Endogenous growth models.

– Capital fundamentalist models.

– Human capital and growth.

– R&D and growth.

7.1 Introduction

In this chapter we extend our discussion of general equilibrium tax incidence theory to a dynamic set-

ting. Whereas the previous chapter restricted attention to a static setting with exogenous factor supplies,

in this chapter both these limitations will be relaxed. The emphasis in this chapter will be on endogeniz-

ing the supply of physical capital by modelling the dynamic saving decisions by households. We thus

enter the huge field of economic growth theory.1

1Readers in need of a more extensive introduction to the theories of economic growth discussed in this chapter are referred
to Heijdra and van der Ploeg (2002, ch. 14). More advanced sources are Burmeister and Dobell (1970), Barro and Sala-i-Martin
(1995), and Aghion and Howitt (1998).

219
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Broadly put there have been two waves of interest in economic growth. The first wave, which oc-

curred during the period 1955-1970, views capital accumulation as the so-called engine of growth. In

Section 7.2 we present a selective overview of exogenous growth models with a particular emphasis on

the effects of taxation. The term “exogenous growth model” was coined not long ago to distinguish

these types of models from more recent “endogenous growth models” that were developed from the

late 1980s onward. In exogenous growth models the long-run rate of economic growth is exogenously

determined, i.e. it depends only on parameters such as population growth and technological change

which are not themselves determined within the model (and thus cannot be affected by government

policy). Of course, economic growth during transition to the long-run equilibrium may depend on

policy parameters such as tax rates and the like.

The second wave of interest in growth theory has produced a huge body of literature on endogenous

growth. This literature accepts the importance of physical capital to the growth process, but it identifies

additional sources of growth, namely human capital accumulation, knowledge creation and transfer,

and the development of new products and/or production processes. The second wave of theorizing

typically gives rise to endogenous growth, i.e. the long-run growth rate depends on government policy

variables. Section 7.3 presents an overview of tax effects in some of the key endogenous growth models.

7.2 Exogenous growth models

In this section we discuss tax effects in the context of exogenous growth models. In the first subsection

we study the classic Solow-Swan model. This model combines a neoclassical technology with a Keynesian

savings function (featuring a constant rate of saving out of current income) and derives the growth

properties. In the second subsection we remove the Keynesian ad hoc savings function and model

the dynamic optimization problem of the representative household under perfect foresight and with

exogenous labour supply. The growth properties of this Ramsey model are investigated. Finally, in the

third subsection we study the extended Ramsey model in which labour supply is also endogenous. This

model is used to study the macroeconomic effects of the corporate tax.

7.2.1 Solow-Swan model

The modern theory of economic growth was initiated by Solow (1956) and Swan (1956) who reacted

to an earlier “Keynesian” literature on growth theory by Harrod (1939, 1948) and Domar (1946, 1947).

The key distinguishing feature between the Harrod-Domar approach and the Solow-Swan approach is

the explicit recognition by the latter of the possibility of capital-labour substitutability in the aggregate

production function.

In this section we first provide a brief overview of the basic Solow-Swan model. Aggregate output,
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Y (t), is produced according to the aggregate production function:

Y(t) = F (K(t), A (t) L(t)) , (A5.1)

where K (t) is the aggregate stock of capital (machines, buildings, PCs, and the like), L (t) is employment

(measured in number of workers), A (t) is the exogenous index of labour-augmenting productivity (work-

ers get more productive as time evolves), and N (t) ≡ A (t) L(t) is employment measured in efficiency

units.

The following technological assumptions are made regarding the production function:

(P1) Constant returns to scale (CRTS), i.e. F (λK(t), λN(t)) = λF (K(t), N(t)) for λ > 0, and F =

FKK + FN N (Euler’s Theorem), where FK ≡ ∂F/∂K and FN ≡ ∂F/∂N;

(P2) Positive but diminishing marginal products (FK, FN > 0 and FKK, FNN < 0), cooperative fac-

tors (FKN > 0), and strict quasi-concavity (FKKFNN − F2
KN > 0), where FKK ≡ ∂2F/∂K2, FNN ≡

∂2F/∂N2, and FKN ≡ ∂2F/∂K∂N = ∂2F/∂N∂K ≡ FNK;

(P3) Inada conditions: convenient curvature properties around the origin (with K or N close to zero) and

in the limit (with K or N approaching infinity):

lim
K→0

FK = lim
N→0

FN = +∞, (A5.2)

lim
K→∞

FK = lim
N→∞

FN = 0. (A5.3)

Assumptions (P1)-(P2) we also routinely adopted in Chapter 5 (see the expressions in (5.2) above), but

assumption (P3) is new. It deals with the behaviour of marginal products in extreme cases. As is shown

in subsection 7.3.1 below, assumption (P3) is not generally satisfied for all standard production func-

tions. It therefore does not constitute an innocuous assumption at all.

Aggregate household saving is described by the following Keynesian savings function:

S(t) = sY(t), 0 < s < 1, (A5.4)

where s is the constant (and exogenous) propensity to save, and S (t) is total saving. In a closed econ-

omy and in the absence of government consumption and taxation, the following two identities hold for

aggregate output:

Y(t) = C(t) + I(t), (A5.5)

= C (t) + S (t) , (A5.6)
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where C(t) is household consumption and I(t) is aggregate gross investment:

I(t) = δK(t) + K̇(t). (A5.7)

In this expression, δK(t) is replacement investment and δ is the constant depreciation rate (δ > 0). As

usual, a dotted variable denotes that variable’s time rate of change, i.e. K̇ (t) ≡ dK (t) /dt denotes net

investment.

It remains to specify the forcing equations for the exogenous variables in the model, i.e. for the num-

ber of workers (L (t)) and for the index of technological advance (A (t)). In the typical representation of

the Solow-Swan model, both are assumed to grow at some constant exponential rate. In the absence of

unemployment, labour supply equals the population which grows according to:

L̇(t)

L(t)
= nL, (A5.8)

where nL is the constant population growth rate. Solving (A5.8) subject to the initial condition L (0) = L0

we obtain the time path for labour supply:

L(t) = L0enLt, (A5.9)

where L0 is the base-year population size. Similarly, labour-augmenting technology is exogenous and

grows at the constant exponential rate nA:

Ȧ(t)

A(t)
= nA, (A5.10)

A(t) = A0enAt, (A5.11)

where A0 is the base-year technology level. By combining (A5.8) and (A5.11) we find both the path for

labour in efficiency units and its growth rate:

N (t) = N0e(nL+nA)t, (A5.12)

Ṅ(t)

N(t)
≡

Ȧ(t)

A(t)
+

L̇(t)

L(t)
= nA + nL, (A5.13)

where N0 ≡ A0L0.

In summary, the most basic version of the growth model is described by the following equations:

I (t) = S (t) , (A5.14)

S(t) = sY(t), (A5.15)

I(t) = δK(t) + K̇(t), (A5.16)
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Y (t) = F (K (t) , N (t)) , (A5.17)

where (A5.14) follows from (A5.5) and (A5.6). The endogenous variables of the model are I (t), S (t),

K (t), and Y (t), the exogenous variable is N (t), and the parameters are s and δ. Unless both nA and nL

are zero, it follows from (A5.12) that N (t) will grow over time so that the system (A5.14)-(A5.17) will

not possess a steady state in level terms. By measuring all variables relative to the path of efficiency

units of labour, however, it is more likely (and indeed guaranteed, given the assumption made thus far)

that a steady state will exist in transformed variables.

The fundamental differential equation for capital per efficiency unit of labour is given by:

k̇(t) = s f (k(t))− (δ + nL + nA)k(t), (A5.18)

where k (t) ≡ K (t) /N (t), y(t) ≡ Y(t)/N(t), and f (k(t)) is the intensive-form production function:

y (t) = f (k(t)) ≡ F (K(t)/N(t), 1) . (A5.19)

It is not difficult to show that the intensive-form production function has the following properties:

f ′(k(t)) ≡ FK (k(t), 1) , (A5.20)

f (k (t))− k (t) f ′(k(t)) = FN (k(t), 1) , (A5.21)

f ′′(k(t)) ≡ N(t)FKK (K(t), N (t)) = FKK (k(t), 1) . (A5.22)

Intermezzo 7.1

Deriving equations (A5.18) and (A5.20)-(A5.22). To derive (A5.18) we substitute (A5.15)-

(A5.17) into (A5.14) to obtain:

δK(t) + K̇(t) = sF (K (t) , N (t)) . (I.1)

Since F (·) features constant returns to scale we can write F (K (t) , N (t)) =

N (t) f (K (t) /N (t) , 1). Hence, (I.1) can be simplified to:

K̇(t)

N (t)
= s f (k (t))− δk(t), (I.2)

where we have used (A5.19) and the definition k (t) ≡ K (t) /N (t). Clearly, the definition
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for k (t) implies:

k̇ (t) =
K̇ (t)

N (t)
− k (t)

Ṅ (t)

N (t)
. (I.3)

By substituting (I.3) into (I.2) and noting (A5.13) we obtain (A5.18).

To derive (A5.20)-(A5.22), we first write Y = NF (K/N, 1) and differentiate with respect

to K:

(FK ≡)
∂Y

∂K
= NFK

(
K

N
, 1

)
1

N
= FK

(
K

N
, 1

)

. (I.4)

Similarly, since Y = N f (k), we also have that:

∂Y

∂K
= N f ′(k)

1

N
= f ′(k). (I.5)

Combining (I.4) and (I.5) we find f ′(k) = FK

(
K
N , 1

)

. We also find from (I.5) that:

(FKK ≡)
∂2Y

∂K2
= f ′′(k)

1

N
. (I.6)

For labour we find:

(FN ≡)
∂Y

∂N
= F

(
K

N
, 1

)

+ NFK(.)
−K

N2
= f (k)− f ′(k)k. (I.7)

To get the final equality in (A5.22) we note that FKK (·) is homogeneous of degree minus one,

i.e. by Euler’s Theorem it can be written as:

NFKK (K, N) = FKK (k, 1) . (I.8)

****

In Figure 7.1 we illustrate the phase diagram for k(t). In that figure, the straight line (δ+ nL + nA)k(t)

represents the amount of investment required to replace worn-out capital and to endow each efficiency

unit of labour with the same amount of capital (recall from (A5.13) that the stock of efficiency units

of labour grows at rate nL + nA). For a constant savings rate, s, the per capita saving curve s f (k (t)),

has the same shape as the intensive-form production function. The Inada conditions say that f (k(t))

is vertical at the origin, is concave, and flattens out as more and more capital per efficiency unit of

labour is accumulated. It follows that there is a unique (non-trivial) stable equilibrium at E0. At point A

saving exceeds required investment, s f (k (t)) > (δ + nL + nA) k (t), so that net investment is positive,
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k̇ (t) > 0. The opposite holds at point B where k̇ (t) < 0.

In the steady state, the capital-effective-labour ratio is constant and equal to k∗. The following prop-

erties of the so-called balanced growth path associated with this steady state can be deduced. First, in the

steady state we have k̇ (t) = 0 so that it follows from, respectively, (A5.18) and (A5.19) that:

k∗ =
s f (k∗)

δ + nL + nA
, (A5.23)

y∗ = f (k∗) . (A5.24)

Since k∗ ≡ (K (t) /N (t))∗ and y∗ ≡ (Y (t) /N (t))∗ are constant whilst N (t) grows exponentially at rate

nL + nA, it follows that K (t) and Y (t) must grow at the same rate as N (t) along the balanced growth

path:

(
K̇ (t)

K (t)

)∗

=

(
Ẏ (t)

Y (t)

)∗

=

(
Ṅ (t)

N (t)

)∗

= nL + nA. (A5.25)

In the second step we note that S (t) = I (t) = sY (t) and that s is constant, so that along the balanced

growth path S (t) and I (t) must grow at the same rate as Y (t):

(
Ṡ (t)

S (t)

)∗

=

(
İ (t)

I (t)

)∗

=

(
Ẏ (t)

Y (t)

)∗

= nL + nA. (A5.26)

Finally, output per worker (i.e. labour productivity) is defined as Y (t) /L (t) and it grows at the follow-

ing rate along the balanced growth path:

(
Ẏ (t)

Y (t)

)∗

−

(
L̇ (t)

L (t)

)∗

= nA. (A5.27)

7.2.1.1 Corporate tax and growth

It is clear from our discussion up to this point that in the Solow-Swan model the long-run growth rate in

the economy is fully explained by exogenous factors, viz. the rate of population growth and the rate of

labour-augmenting technological change. The most likely place for taxes to have any effect in the model

at all is via the aggregate savings rate s. Up to this point it was simply asserted that s was exogenous

and constant.2 Suppose now that s depends negatively on the capital tax tK, i.e. we write s = s (tK)

and assume that ∂s/∂tK < 0. An increase in the capital tax, tK, will then have the effects as illustrated

in Figure 7.2. In that figure the economy is initially in the steady state at point E0. An increase in the

capital tax reduces the savings propensity from s0 to s1 and rotates the savings curve in a clockwise

fashion from s0 f (k (t)) to s1 f (k (t)). At impact, both K (t) and N (t) and thus k (t) are predetermined

and the economy jumps from point E0 to A. At that point, actual investment falls short of required

2In Chapter 3 intertemporal consumption and saving theories were discussed. It was shown that, in the absence of borrowing
constraints, saving generally depends of lifetime wealth rather than on current income.
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Figure 7.1: The Solow-Swan model

investment so net investment is negative, i.e. k̇ (t) < 0. Gradually over time the economy moves from

point A to the new steady state at E1.

During the transition period, economic growth is less than it is in the balanced growth path, i.e. the

capital tax negatively affects economic growth during that time.3 Not surprisingly, in view of (A5.25)

and (A5.26), the long-run growth rate in the economy is not affected by the tax. In the Solow-Swan

model this long-run growth rate is independent of the savings rate. Of course the long-run levels of y

and k are affected by the capital tax as Figure 7.3 shows. At the time of the shock (t = 0) the economy

is at point E0 which lies on the balanced growth path [ln K∗ (t)]0. This growth path is parallel to the

path for ln N (t), the slope of which is nA + nL. The vertical difference between [ln K∗ (t)]0 and ln N (t)

is equal to ln k∗0, where k∗0 is illustrated in Figure 7.2. During transition, the economy moves from point

E0 in the direction of the new balanced growth path [ln K∗ (t)]1 which is again parallel to the path for

ln N (t).

7.2.2 Ramsey model

The Solow-Swan model is somewhat ill-equipped for studying tax incidence because one of the key

variables in the model, viz. the savings rate, is exogenous. The objective of this subsection is to extend

the Solow-Swan model by providing a theoretical foundation for intertemporal consumption and saving

behaviour.4 In doing so we develop the so-called Ramsey growth model, which derives its name from the

mathematician-economist Frank Ramsey, who formulated a forward-looking theory of saving almost

eighty years ago–see Ramsey (1928).

3Since k (t) falls during transition, it follows from (A5.19) that y (t) also falls during that time, i.e. ẏ (t) /y (t) < 0. Since
y (t) ≡ Y (t) /N (t) it is easy to show that Ẏ (t) /Y (t) < nA + nL during transition.

4See Chapter 3 for the two-period consumption saving model and Section 4.1 of Chapter 5 for its multiperiod generalization.
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7.2.2.1 Representative household

To keep the model as simple as possible, we abstract from exogenous sources of economic growth by

assuming that there is no population growth (nL = 0) and no labour-augmenting technological progress

(nA = 0). As in Chapter 5, we develop the model by postulating the existence of a representative

household who is infinitely lived, enjoys perfect foresight, and supplies an exogenous amount of labour.

The household’s objective function is:

Λ (0) ≡
∫ ∞

0
U (C (t)) e−ρtdt, (A5.28)

where Λ (0) is life-time utility, U (·) is the felicity function (exhibiting U′ (·) > 0 > U′′ (·)), C (t) is (the

flow of) consumption of the household, and ρ is the pure rate of time preference (ρ > 0).

Portfolio investment opportunities of the household consist of purchasing shares in existing firms or

buying (short-period) government bonds. There is no risk so that shares and bonds are perfect substi-

tutes in the portfolio. The budget identity is given by:

Ḃ (t) + PE (t) Ė (t) + C (t) = (1 − tL)W (t) L̄ + (1 − tR) r (t) B (t) + Z (t) , (A5.29)

where B (t) is the stock of government debt, PE (t) is the market price of shares, E (t) is the outstanding

stock of equities, tL is the tax on wage income, W (t) is the wage rate, L̄ is labour supply, tR is the tax

on interest income, r (t) is the interest rate on government bonds, and Z (t) is the lump-sum transfer

received from the government. As usual we have Ḃ (t) ≡ dB (t) /dt, and Ė (t) ≡ dE (t) /dt. Compared

to the model discussed in Chapter 5, we abstract from capital gains taxation (tG = 0) and the firm pays

no dividends (D (t) = 0).

The household chooses paths for C (t), B (t), and E (t) in order to maximize (A5.28) subject to (A5.29)

and some transversality conditions. In addition the household faces some initial conditions, i.e. E(0)

and B (0) are predetermined at time t = 0. The first-order conditions for the household’s optimization

problem are:5

U′ (C (t)) = λ (t) , (A5.30)

(1 − tR) r (t) =
ṖE (t)

PE (t)
, (A5.31)

λ̇ (t)

λ (t)
= ρ − (1 − tR) r (t) , (A5.32)

where λ (t) is the co-state variable associated with aggregate financial wealth. Equation (A5.30) is the

(implicit) Frisch demand for consumption (relating C (t) to the marginal utility of wealth λ (t)), (A5.31)

is the no-arbitrage equation between government bonds and equities (with the returns on equity con-

5The details of the derivation are explained in Intermezzo 5.4 above.
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sisting solely of capital gains), and (A5.32) describes the optimal time path for λ (t).

7.2.2.2 Representative firm

Our description of the representative firm is very similar to the one presented in Chapter 5. For conve-

nience we quickly re-derive firm behaviour. We continue to abstract from corporate debt and simplify

the model further by assuming that the firm pays no dividends and that there are no adjustment costs

of firm investment. Gross profit, Π (t), is defined as:

Π (t) ≡ F (K (t) , L (t))− W (t) L (t) , (A5.33)

where K (t) is the capital stock and L (t) is labour demand. Gross profit forms the tax base for the

corporate income tax and retained earnings are equal to after-tax profit:

(1 − tK)Π (t) = RE (t) , (A5.34)

where tK is the corporate tax, RE (t) is retained earnings, and we have incorporated D (t) = 0 (no

dividend payments).

There are no adjustment costs of investment so the capital accumulation identity is as given in (A5.7).

The financing constraint of the firm is thus:

RE (t) + PE (t) Ė (t) = I (t) , (A5.35)

where Ė (t) is the sale of new equities and I (t) is gross investment. By combining (A5.34) and (A5.35)

(under the assumption that RE (t) > 0) we obtain:

PE (t) Ė (t) = I (t)− (1 − tK)Π (t) . (A5.36)

According to (A5.36), if investment exceeds after-tax profit, then the firm issues new shares (Ė (t) > 0).

In the opposite case the firm buys back its own shares (Ė (t) < 0).

The market value of outstanding shares is:

V (t) = PE (t) E (t) . (A5.37)

Using (A5.37) and the household no-arbitrage equation (A5.31) we find the differential equation for

V (t):6

V̇ (t) = (1 − tR) r (t)V (t)− [(1 − tK)Π (t)− I (t)] . (A5.38)

6Differentiating (A5.37) we get:

V̇ (t) = ṖE (t) E (t) + PE (t) Ė (t) .
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The only economically sensible (no-bubble) solution for V (0) is obtained in the usual manner by solving

(A5.38) forward in time and imposing a terminal condition:7

V (0) =
∫ ∞

0
[(1 − tK)Π (t)− I (t)] exp

[

−
∫ t

0
θ (τ) dτ

]

dt, (A5.39)

where θ (τ) is the cost of capital to the firm:

θ (τ) ≡ r (τ) (1 − tR (τ)) . (A5.40)

Equation (A5.39) shows that the fundamental value of the firm is equal to the present value of after-

corporate-tax cash flows, using the cost of capital for discounting purposes. In the absence of dividend

payments, dividend taxes, and capital gains taxes, the cost of capital is equal to the after–tax interest

rate on government bonds–see (A5.40).

The firm maximizes its stockmarket value (A5.39) subject to the capital accumulation constraint

(A5.7). Because there are no adjustment costs on firm investment, it follows that the firm can vary

its desired capital stock at will. Indeed, by substituting (A5.7) into (A5.39) and integrating we find that

the objective function for the firm can be written as:

V(0) =
∫ ∞

0

[
(1 − tK)Π (t)− δK (t)− K̇ (t)

]
exp

[

−
∫ t

0
θ (τ) dτ

]

dt,

=
∫ ∞

0

[

(1 − tK)Π (t)− R (t)K (t)− K̇ (t) + (R (t)− δ)K (t)
]

exp

[

−
∫ t

0
θ (τ) dτ

]

dt

= K(0) +
∫ ∞

0

[

(1 − tK)Π (t)− R (t)K(t)
]

exp

[

−
∫ t

0
θ (τ) dτ

]

dt, (A5.41)

where K(0) is the initial capital stock8 and R (t) is the rental rate on capital:

R (t) ≡ r(t) (1 − tR (t)) + δ. (A5.42)

Equation (A5.41) has two important implications. First, it shows that the firm’s decision about factor

Using (A5.37), the household no-arbitrage equation (A5.31) can be written as:

(1 − tR) r (t)V (t) = ṖE (t) E (t) .

By combining these expressions with (A5.36) we obtain (A5.38).
7As in Chapter 5, this terminal condition is:

lim
t→∞

V (t) exp

[

−
∫ t

0
θ (τ) dτ

]

= 0.

8In going from the second to the third line in (A5.41) we use the fact that:

∫ ∞

0

[

K̇(t)− r(t) (1 − tR (t)) K(t)
]

exp

[

−
∫ t

0
θ (τ) dτ

]

dt

=
∫ ∞

0
d

[

K(t) exp

[

−
∫ t

0
θ (τ) dτ

]]

= −K(0),

where we have used the fact that limK(t)→∞ K(t) exp
[

−
∫ t

0 θ (τ) dτ
]

= 0 in the final step.
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inputs is essentially a static one, i.e. maximization of V(0) by choice of L(t) and K(t) yields the familiar

marginal productivity conditions for labour and capital:

W (t) = FL (K (t) , L (t)) , (A5.43)

R (t) = (1 − tK) FK (K (t) , L (t)) . (A5.44)

Equation (A5.43) is the standard labour demand equation. Since the wage bill is exempt from the cor-

porate tax, labour demand is not directly affected by it. Equation (A5.44) is the demand for physical

capital by the firm. The decision rule calls for an equalization of the rental rate on capital and the after-

corporate-tax marginal product of labour.

The second implication of (A5.41) is that the maximized value of V (0) equals the firm’s capital stock,

i.e. V (0) = K (0). This result follows from the fact that the production function exhibits constant returns

to scale, so that factor payments exhaust output, i.e. the integral appearing on the right-hand side of

(A5.41) is zero.

Two further expressions suffice to close the model. First, in the absence of government consumption

the goods market clearing condition can be written as follows:

Y (t) = C (t) + δK (t) + K̇ (t) . (A5.45)

Formally, (A5.45) is obtained by substituting (A5.7) into (A5.5). Second, the labour market equilibrium

condition is:

L (t) = L̄, (A5.46)

where L (t) is labour demand and L̄ is (exogenous) labour supply.

7.2.2.3 Summary of the model

By gathering the various expressions, the full Ramsey growth model can be summarized in the following

compact format:

U′ (C (t)) = λ (t) , (A5.47)

λ̇ (t)

λ (t)
= ρ − [(1 − tK) FK (K (t) , L̄)− δ] , (A5.48)

K̇ (t) = F (K (t) , L̄)− C (t)− δK (t) . (A5.49)

Equation (A5.47) is simply the Frisch demand for consumption restated (see also (A5.30) above), (A5.48)

is the household Euler equation expressed in terms of λ (t) (instead of C (t)). It is obtained by using

(A5.32), (A5.42), and (A5.44) and imposing labour market equilibrium (A5.46). The term in square
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brackets on the right-hand side is the after-tax net marginal product of capital. Finally, equation (A5.49)

is the goods market clearing condition in the absence of government consumption. It is obtained by

using (A5.45), substituting the production function, and imposing labour market equilibrium (A5.46).

The endogenous variables in the model are C, λ, and K, the exogenous variable is the corporate tax rate,

tK, and the parameters are ρ and δ.

In Figure 7.4 we present the phase diagram for the Ramsey model in (λ (t) , K (t)) space. The λ̇ (t) =

0 line is obtained from (A5.48) and defines a unique capital-labour ratio, KKR/L̄, where the superscript

KR stands for “Keynes-Ramsey”:

λ̇ (t) = 0 ⇔ FK

(
KKR

L̄
, 1

)

=
ρ + δ

1 − tK
. (A5.50)

For points to the left (right) of the λ̇ (t) = 0 line, K (t) is too low (too high), FK (K (t) , L̄) is too high (too

low), and λ (t) decreases (increases) over time, i.e. λ̇ (t) < 0 (> 0). This is indicated with the vertical

arrows in Figure 7.4.

The K̇ (t) = 0 line is obtained by setting K̇ (t) = 0 in (A5.49) and substituting the resulting expression

for C (t) into (A5.47):

K̇ (t) = 0 ⇔ U′ (F (K (t) , L̄)− δK (t)) = λ (t) . (A5.51)

It follows from (A5.51) that the slope of the K (t) = 0 line is equal to:

(
dλ (t)

dK (t)

)

K̇(t)=0

= U′′ (·)

[

FK

(
K (t)

L̄
, 1

)

− δ

]

. (A5.52)

In view of the assumption that U′′ (·) < 0, we derive from (A5.52) that:

(
dλ (t)

dK (t)

)

K̇(t)=0

<

=

>

0 ⇔ FK

(
K (t)

L̄
, 1

) >

=

<

δ. (A5.53)

We define the golden-rule capital-labour ratio by that point along the K̇ (t) = 0 line for which consump-

tion is at its maximum. We find in a straightforward fashion from (A5.49) that this golden rule capital

labour ratio is defined implicitly by:

FK

(
KGR

L̄
, 1

)

= δ, (A5.54)

where the superscript GR stands for “golden rule”. Comparing (A5.50) and (A5.54), it is clear that

KGR exceeds KKR because (ρ + δ) / (1 − tK) > δ and the marginal product of capital declines with the

amount of capital (FKK < 0, so that a high value for K implies a low value for FK). Given the definition of
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Figure 7.4: The Ramsey growth model

the golden-rule capital-labour ratio, it follows from (A5.53) that the K̇ (t) = 0 line is downward (upward)

sloping for values of K (t) less than (greater than) than KGR.

The dynamic adjustment in the capital stock can be deduced from (A5.49). By differentiating this

expression with respect to λ (t) we find:

∂K̇ (t)

∂λ (t)
= −

dC (t)

dλ (t)
= −

1

U′′ (·)
> 0, (A5.55)

i.e. for points above (below) the K̇ (t) = 0 line, λ (t) is too high (too low), C (t) is too low (too high), and

the capital stock increases (decreases) over time, i.e. K̇ (t) > 0 (< 0). See the horizontal arrows in Figure

A5.4.

Given the configuration of horizontal and vertical arrows, it is clear that there is a downward sloping

saddle path, SP, which passes through the unique equilibrium at point E0 in the right-hand panel of

Figure 7.4. The downward sloping relationship between λ (t) and C (t), defined by the Frisch demand

(A5.47), is plotted in the left-hand panel of Figure 7.4.

The growth properties of the Ramsey model are as follows. In the steady state, the capital-labour

ratio is constant and equal to KKR/L̄. Since labour supply is constant, the capital stock itself also settles

at a constant value in the steady state. With both factors constant, it follows that all other variables are

also constant in the steady state. The Ramsey model is thus an example of an exogenous growth model

because all variables grow at the same exogenous rate along the balanced growth path (here this rate is

zero because we have set nL = nA = 0).
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7.2.2.4 Corporate tax again

We can now re-examine the effects of the capital tax tK. Figure 7.5 illustrates the effects of an unantic-

ipated and permanent increase in the corporate tax tK, at impact, during the transition phase, and in

the long-run. It is assumed that the economy is initially in the steady-state equilibrium at E0. By totally

differentiating (A5.50) with respect to the golden-rule capital stock and the corporate tax we find:

FKK

(
KKR

L̄
, 1

)
dKKR

L̄
=

ρ + δ

(1 − tK)
2

dtK ⇒

dKKR

dtK
=

(ρ + δ) L̄

(1 − tK)
2 FKK

(
KKR

L̄
, 1
) < 0, (A5.56)

where the sign follows from the fact that FKK (·) < 0. The increase in the corporate tax, reduces the

Keynes-Ramsey capital stock and thus shifts the λ̇ (t) = 0 line to the left. Clearly, since tK does not

feature in (A5.51) there is no effect on the K̇ (t) = 0 line. In Figure 7.5, the long-run equilibrium shifts

from point E0 to E1, the capital stock and consumption both decline and the marginal utility of wealth

increases.

The transitional dynamics is as follows. In the right-hand panel of Figure 7.5, the immediate effect

consists of a jump from E0 to A. At impact the capital stock is predetermined and the economy jumps

onto the only stable trajectory leading to the new steady-state equilibrium. The impact reduction in the

marginal utility of wealth is associated with an increase in consumption as is illustrated in the left-hand

panel of the figure.

At point A in the right-hand panel, actual investment falls short of required investment so K̇ (t) < 0

and the after-tax net marginal product of capital falls short of the rate of time preference, i.e. (1 − tK) FK (K (t) , L̄)−

δ < ρ so that λ̇ (t) > 0. There is a gradual move in north-westerly direction (along the saddle path) to

the new steady-state at E1. Growth is less than in the balanced growth path during transition, as capital

and output both fall during that time (negative growth). As in the Solow-Swan model, the long-run

growth rate is unaffected by the capital tax, i.e. it remains zero.

An interesting implication of this dynamic model is that the incidence of the corporate tax differs in

the short-run and the long-run. By imposing labour market equilibrium (A5.46) in (A5.43)-(A5.44) we

find the following expressions for factor prices:

W (t) = FL (K (t) , L̄) , (A5.57)

R (t) = (1 − tK) FK (K (t) , L̄) . (A5.58)

In the short run, the capital stock is fixed so it follows from (A5.57) that the wage rate is unchanged and
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Figure 7.5: A rise in the corporate tax in the Ramsey model

from (A5.58) that the rental rate on capital falls:

dW (0)

dtK
= 0,

dR (0)

dtK
= −FK

(

KKR, L̄
)

< 0. (A5.59)

Hence, in the impact period capital owners bear the full burden of the corporate tax.

In the long run, however, the capital stock is crowded out, and the after-tax reward to capital owners

is restored, i.e. R (∞) = ρ + δ. Since capital and labour are cooperative production factors (FLK > 0), it

follows from (A5.57) that the wage rate falls in the long run:

dW (∞)

dtK
= FLK

(

KKR, L̄
) dKKR (∞)

dtK
< 0,

dR (t)

dtK
= 0. (A5.60)

Hence, labour bears the full burden of the corporate tax in the long run!

7.2.3 Extended Ramsey model

One of the shortcomings of the standard Ramsey model (at least as a tool for tax policy analysis) is

the lack of substitution possibilities it incorporates. With exogenous labour supply and a single-good

economy, the only substitutability that exists in the model concerns intertemporal substitution of con-

sumption. This limits the kinds of distortions that can be distinguished with the model. There are at

least two ways to make the model more suitable for tax policy analysis, one of which is pursued in this

subsection. First, one might forge the link with the Harberger-Jones model studied in Chapter 6 by pos-

tulating the existence of two goods produced in separate sectors of the economy. In the context of the

growth model, one sector could be producing the investment good and the other sector the consump-

tion good. This approach was taken by Uzawa (1961, 1963, 1964). A modern application of the Uzawa
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approach is studied in Section 7.3.1 below.

Here we pursue the second way to make the model more suitable for tax policy analysis: we retain

the single-good assumption but endogenize the labour supply decision by households.9 The objective

function of the representative household is modified to:

Λ (0) ≡
∫ ∞

0
U (C (t) , 1 − L (t)) e−ρtdt, (A5.61)

where L (t) is labour supply and 1 − L (t) is leisure (the household’s time endowment is unity). Com-

pared to (A5.28), the only thing that has changed is the inclusion of leisure into the felicity function,

U (·). We assume that U (·) is a strictly quasi-concave function in C and 1 − L, i.e. UC > 0, U1−L > 0,

UCC < 0, U1−L,1−L < 0, and UCCU1−L,1−L − (UC,1−L)
2
> 0 (see Silberberg and Suen, 2001, pp. 140, 260).

This implies that indifference curves bulge toward the origin. [REFER TO CHAPTER 2]

The budget identity of the representative household is modified to recognize the endogeneity of

labour supply:

Ḃ (t) + s (t) Ė (t) + C (t) = (1 − tL)W (t) L (t) + (1 − tR) r (t) B (t) + Z (t) , (A5.62)

where wage income is now W (t) L (t) (rather than W (t) L̄, as in (A5.29) above) and tL is the labour

income tax.

The household chooses paths for C (t) and L (t) (the real decisions) and for B (t) and E (t) (the port-

folio decisions) in order to maximize (A5.61) subject to (A5.62) and some transversality conditions, and

taking as given the initial conditions regarding E(0) and B (0) (which are predetermined at time t = 0).

The key first-order conditions for this optimization problem are given by (A5.31)-(A5.32) and:

UC (C (t) , 1 − L (t)) = λ (t) , (A5.63)

U1−L (C (t) , 1 − L (t)) = λ (t) (1 − tL)W (t) , (A5.64)

where λ (t) is the co-state variable associated with aggregate financial wealth, i.e. the marginal utility

of wealth. Equations (A5.63)-(A5.64) implicitly define the Frisch demands for consumption and leisure.

Compared to the standard Ramsey model, (A5.63) differs from (A5.30) in that the marginal utility of

consumption may depend on leisure (if UC,1−L 6= 0 this is indeed the case). Equation (A5.64) is new

compared to the standard Ramsey model.

Note that the labour supply model gives rise to the same first-order condition as was obtained in

Chapter 2 for the static model. Indeed, by dividing (A5.64) by (A5.63) we can eliminate λ (t) and obtain:

U1−L (C (t) , 1 − L (t))

UC (C (t) , 1 − L (t))
= (1 − tL)W (t) , (A5.65)

9For background on the extended Ramsey model, see Heijdra and van der Ploeg (2002, pp. 478-483). Judd (1987) is the classic
paper dealing with tax policy analysis in the extended Ramsey model.
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which says that at each instant in time the household equates the marginal rate of substitution between

consumption and leisure to the after-tax wage rate. This is exactly the same condition we found for the

static model, see equation (2.7) above.

The rest of the model is unchanged compared to the standard Ramsey model. From the firm side,

factor demands are still given by (A5.43)-(A5.44) and the capital accumulation constraint is still given

by (A5.7). In the absence of government consumption, aggregate output is still the sum of consumption

and gross investment (as in (A5.5) above) and tax revenues are equal to:

Z (t) = tK [F (K (t) , L (t))− W (t) L (t)] + tLW (t) L (t) . (A5.66)

7.2.3.1 Compact summary of the model

The extended Ramsey model can be written in a very compact format as follows:

C (t) = c (λ (t) , K (t) , tL) , (A5.67)

L (t) = l (λ (t) , K (t) , tL) , (A5.68)

K̇ (t) = L (t) f

(
K (t)

L (t)

)

− C (t)− δK (t) , (A5.69)

λ̇ (t)

λ (t)
= ρ + δ − (1 − tK) f ′

(
K (t)

L (t)

)

. (A5.70)

Equation (A5.67) and (A5.68) are the expressions for, respectively, consumption and labour supply, con-

ditional on the state variables (λ (t) and K (t)) and the labour income tax rate (tL). They are obtained by

noting that (A5.63), (A5.64) and (A5.43) define implicit functions (c (·) and l (·)) for these variables (see

the Intermezzo). The capital stock enters these functions because the wage rate depends on it. Equation

(A5.69) is the capital accumulation expression obtained by combining (A5.5) and (A5.7) and noting that

Y (t) = L (t) f (K (t) /L (t)) where f (K (t) /L (t)) ≡ F (K (t) /L (t) , 1). Finally, (A5.70) is the usual ex-

pression for the marginal utility of wealth which is obtained by combining (A5.32), (A5.42) and (A5.44)

and noting that FK (·) = f ′ (·). The endogenous variables of the model are C (t), L (t), λ (t), and K (t),

the exogenous variables are tK and tL, and the parameters are ρ and δ.

Several things are worth noting about the extended Ramsey model. First, its growth properties are as

follows. In the steady state, we have λ̇ (t) = K̇ (t) = 0, and (A5.70) defines a unique capital-labour ratio

(kKR ≡ (K (t) /L (t))KR), where the superscript KR again stands for “Keynes-Ramsey”. Using this value

for kKR, equations (A5.67)-(A5.69) can then be used to obtain the steady-state solutions for λ, C, and L.

There is no long-run growth in the model (because the population is constant) and taxes therefore do

not affect long-run growth either. In that sense the extended Ramsey model does not differ significantly

from the standard Ramsey model.

The second noteworthy feature of the model concerns its implications for tax incidence. Judd (1987)

uses the most general version of the model for tax policy analysis. Such an analysis is rather complex
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because of the plethora of different elasticities affecting the implicit functions c (·) and l (·). Instead of

working with the general model, here we study a “Mickey Mouse” version of it in which all important

substitution elasticities are set equal to unity.

Intermezzo 7.2

Frisch consumption demand and labour supply. The Frisch consumption demand (A5.67)

and labour supply (A5.68) are derived as follows. We drop the time index for convenience.

By using (A5.43), (A5.63), and (A5.64) we find an implicit system of equations relating C and

1 − L to λ, tL, and K:

UC (C, 1 − L) = λ, (A)

U1−L (C, 1 − L) = λ (1 − tL) FL (K, L) . (B)

We postulate the existence of implicit functions c (·) and l (·) and wish to determine their

partial derivatives with respect to their arguments. By totally differentiating (A)-(B) we find:

∆




dC

dL



 =




1

− (1 − tL) FL



 dλ +




0

λFL



 dtL

−




0

λ (1 − tL) FKL



 dK, (C)

where ∆ is defined as follows:

∆ ≡




UCC −UC,1−L

−UC,1−L U1−L,1−L + λ (1 − tL) FLL



 , (D)

and where we have used the fact that d (1 − L) = −dL. The determinant of ∆ is positive

because felicity is quasi-concave and there are diminishing returns to the labour input, i.e.

|∆| > 0. By inverting ∆ we find from (C):

|∆| dC = [U1−L,1−L + λ (1 − tL) FLL − (1 − tL) FLUC,1−L] dλ

+ λFLUC,1−LdtL − λ (1 − tL) FKLUC,1−LdK, (E)

|∆| dL = [UC,1−L − (1 − tL) FLUCC] dλ + λFLUCCdtL

− λ (1 − tL) FKLUCCdK. (F)

By changing one of λ, K, and tL at a time we obtain the desired partial derivatives of the
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implicit functions. The partial derivatives for λ are thus:

cλ ≡
∂C

∂λ
=

U1−L,1−L + λ (1 − tL) FLL − (1 − tL) FLUC,1−L

|∆|
⋚ 0, (G)

lλ ≡
∂L

∂λ
=

UC,1−L − (1 − tL) FLUCC

|∆|
⋚ 0, (H)

where the ambiguity arises from the fact that we have not yet made an assumption regarding

the cross partial derivative, UC,1−L. Clearly, if UC,1−L ≥ 0 then cλ < 0 and lλ > 0.

The partial derivatives for K are:

cK ≡
∂C

∂K
= −

λ (1 − tL) FKLUC,1−L

|∆|
⋚ 0, (I)

lK ≡
∂L

∂K
= −

λ (1 − tL) FKLUCC

|∆|
> 0. (J)

The labour supply effect is unambiguously positive but the consumption effect is fully de-

termined by the sign of UC,1−L.

Finally, the partial derivatives for tL are:

ctL
≡

∂C

∂tL
=

λFLUC,1−LdtL

|∆|
⋚ 0, (K)

ltL
≡

∂L

∂tL
=

λFLUCCdtL

|∆|
< 0. (L)

Not surprisingly (since both K and 1 − tL enter via the wage rate), the labour supply effect

is unambiguously negative but the consumption effect is fully determined by the sign of

UC,1−L.

Note that for the loglinear felicity function, UC,1−L = 0 and cK = ctL
= 0 (see the text).

****

7.2.3.2 Tax incidence in the unit-elastic model

In the so-called unit-elastic model all elasticities appearing in the extended Ramsey model are set equal

to unity. Specifically, on the household side we assume that the felicity function is loglinear:

U (C, 1 − L) = ln
(

Cα (1 − L)1−α
)

, 0 < α < 1. (A5.71)

This expression implies, of course, that the intertemporal substitution elasticity for consumption is equal

to unity (logarithmic felicity) and that the intratemporal substitution elasticity between consumption

and leisure is also unity (Cobb-Douglas sub-felicity function). On the production side we use the fol-
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lowing Cobb-Douglas production function:

F (K, L) ≡ KεL1−ε, 0 < ε < 1, (A5.72)

which implies that the intratemporal substitution elasticity between capital and labour is unity.

By using (A5.71) and (A5.72) we find that the model (A5.67)-(A5.70) is simplified quite a lot:

C (t) =
α

λ (t)
, (A5.73)

1 − α

1 − L (t)
= λ (t) (1 − tL) (1 − ε)

(
K (t)

L (t)

)ε

, (A5.74)

λ̇ (t)

λ (t)
= ρ + δ − (1 − tK) ε

(
K (t)

L (t)

)ε−1

, (A5.75)

K̇ (t) = L (t)

(
K (t)

L (t)

)ε

− C (t)− δK (t) . (A5.76)

Equations (A5.73) and (A5.74) are the Frisch demands for, respectively, consumption and leisure. Since

C (t) only depends on λ (t), we can condense the model even more by eliminating λ (t) from (A5.73)-

(A5.75):

(1 − α)C (t)

α [1 − L (t)]
= (1 − tL) (1 − ε)

(
K (t)

L (t)

)ε

, (A5.77)

Ċ (t)

C (t)
= (1 − tK) ε

(
K (t)

L (t)

)ε−1

− (ρ + δ) . (A5.78)

The model consists of the capital accumulation expression (A5.76), the labour market equilibrium con-

dition (A5.77), expressing combinations of C, L, and K for which labour supply (left-hand side) equals

labour demand (right-hand side), and the household Euler equation (A5.78).

The phase diagram of the unit-elastic model is presented in Figure 7.6. The construction of the

phase diagram is considerably more complicated than for the standard Ramsey model because labour

supply depends on the state variables of the model, viz. consumption and the capital stock. Indeed, the

labour market equilibrium (LME) condition (A5.77) defines an implicit function relating equilibrium

employment to consumption and the capital stock:

L (t) = l

(

C (t)K (t)−ε

1 − tL

)

, (A5.79)

with l′ (·) < 0 (see Intermezzo). We find the following partial effects:

∂L (t)

∂C (t)
= l′ (·)

K (t)−ε

1 − tL
< 0, (A5.80)

∂L (t)

∂K (t)
= −εl′ (·)

C (t)K (t)−(1+ε)

1 − tL
> 0, (A5.81)
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∂L (t)

∂tL
= l′ (·)

K (t)−ε

(1 − tL)
2
< 0. (A5.82)

Intermezzo 7.3

Derivation of (A5.79). Dropping the time index, we write (A5.77) as:

[φ (L) ≡] [1 − L] L−ε = ω0
CK−ε

1 − tL
, (A)

where ω0 ≡ (1 − α) / [α (1 − ε)] > 0 is a constant. We find that φ (L) is positive and down-

ward sloping in the feasible range L ∈ [0, 1] and can thus be inverted, i.e. we can write:

L = l (·) ≡ φ−1

(

ω0
CK−ε

1 − tL

)

. (B)

The derivative of l (·) with respect to its argument is obtained from (A) by using the Implicit

Function Theorem:

φ′ (L) dL = ω0d

(
CK−ε

1 − tL

)

⇒ l′ (·) ≡
dL

d
(

CK−ε

1−tL

) =
ω0

φ′ (L)
< 0. (C)

****

The Ċ (t) = 0 line is the combination of C (t) and K (t) such that the capital-labour ratio is constant.

The equilibrium capital-labour ratio is obtained from (A5.78):

kKR ≡

(
K

L

)KR

=

[
ρ + δ

(1 − tK) ε

]1/(ε−1)

. (A5.83)

Using (A5.83) in (A5.77) we immediately find that C (t) / (1 − L (t)) is constant along the Ċ (t) = 0 line.

Since K (t) /L (t) is also constant along that line, it follows that the Ċ (t) = 0 line is a straight downward

sloping line–see Figure 7.6.

Consumption dynamics can be found by noting that (by using (A5.79) and (A5.83)) equation (A5.78)

can be written as:

Ċ (t)

C (t)
= (1 − tK) ε












K (t)

l
(

C(t)K(t)−ε

1−tL

)






ε−1

−
(

kKR
)ε−1







. (A5.84)

It follows from (A5.84) that ∂
[
Ċ (t) /C (t)

]
/∂C (t) < 0 (since ∂L/∂C < 0 by (A5.80)), i.e. consumption

rises (falls) over time for points below (above) the Ċ (t) = 0 line. This has been indicated with vertical
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arrows in Figure 7.6.

The K̇ (t) = 0 line is the combination of C (t) and K (t) such that the capital stock is constant over

time. By using (A5.76) and (A5.79) and setting K̇ (t) = 0 we find:

C (t) =

[

l

(

C (t)K (t)−ε

1 − tL

)]1−ε

K (t)ε − δK (t) . (A5.85)

It is straightforward (though a little tedious) to show that the K̇ (t) = 0 line is as drawn in Figure 7.6.10

The K̇ (t) = 0 lines has two roots on the horizontal axis and attains a maximum where the capital stock is

equal to its golden-rule level KGR. Note that, since labour supply is endogenous, this golden-rule capital

stock is different from the one attained in the standard Ramsey model, i.e. KGR in Figures 7.4 and 7.6

are not the same.

In order to derive the dynamic behaviour of the capital stock, we first substitute (A5.79) into (A5.76):

K̇ (t) =

[

l

(

C (t)K (t)−ε

1 − tL

)]1−ε

K (t)ε − C (t)− δK (t) . (A5.86)

By partially differentiating this expression with respect to consumption we find:

∂K̇ (t)

∂C (t)
= (1 − ε) l (·)−ε K (t)ε ∂L (t)

∂C (t)
− 1 < 0, (A5.87)

where the sign follows from the fact that ∂L/∂C < 0 (see (A5.80) above). Above (below) the K̇ (t) = 0

line, consumption is too high (low) and labour supply is too low (high), so net investment is negative

(positive). This is indicated by the horizontal arrows in Figure 7.6.

There is a unique equilibrium at point E0 where the K̇ (t) = 0 line intersects the Ċ (t) = 0 line. Given

the configuration of vertical and horizontal arrows, it is clear that this equilibrium is a saddle point (just

as in the standard Ramsey model).

In Figure 7.7 we illustrate the effects of an increase in the corporate tax rate, tK. Since this tax rate

does not feature in (A5.86), it follows that the K̇ (t) = 0 line is not affected by the shock. It follows from

(A5.84) that the Ċ (t) = 0 line rotates in a counter-clockwise fashion around point KC (at that limiting

point, L (t) = 1 and C (t) = 0), say from [Ċ (t) = 0]0 to [Ċ (t) = 0]1. The long-run equilibrium shifts

from E0 to point E1. At impact, the capital stock is predetermined and the economy jumps from point

E0 to point A on the saddle path SP1. At that point net investment is negative (K̇ (t) < 0) and the

consumption time profile is downward sloping (Ċ (t) < 0). Over time, the economy therefore moves

gradually from A to E1. Just as in the standard Ramsey model, both consumption and the capital stock

are reduced in the long run as a result of the tax increase. So as far as the macroeconomic effects are

concerned the two models do not yield vastly (qualitatively) different conclusions.

The tax incidence effects on factor prices are as follows. At impact, the increase in consumption

10The interested reader is referred to Heijdra and van der Ploeg (2002, pp. 530-533) for a detailed derivation of this curve.
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Figure 7.6: Phase diagram of the extended Ramsey model

(dC (0) /dtK > 0) is associated with a decrease in labour supply and equilibrium employment (dL (0) /dtK <

0). Since the capital stock is fixed at impact, the capital-labour ratio rises (dk (0) /dtK > 0), the marginal

product of capital falls and the marginal product of labour rises. Hence, at impact the wage rate in-

creases whilst the rental rate on capital decreases:

dW (0)

dtK
=

dFL

dk (0)

dk (0)

dtK
> 0, (A5.88)

dR (0)

dtK
= −FK

(

kKR, 1
)

+ (1 − tK)
dFK

dk (0)

dk (0)

dtK
< 0. (A5.89)

In the standard Ramsey model the wage is unchanged and the rental rate on capital declines (see (A5.59)

above). In contrast, in the extended Ramsey model, the impact reduction in labour supply pushes up

the wage rate and increases the relative abundance of capital (which reduces the marginal product of

capital). In equation (A5.89) there is both a direct effect of the tax (first term on the right-hand) and an

indirect or induced effect (second term).

It is not difficult to show that in the long run, labour continues to bear the full burden of the tax. In

the long run the rental rate is pinned down by the pure rate of time preference (R (∞) = ρ + δ) and the

reduction in the capital labour ratio leads to a decrease in the wage rate (dW (∞) /dtK < 0).

We close this subsection with two further remarks on the extended Ramsey model. First, the gen-

eral model (with non-unitary substitution elasticities) can easily be handled by performing local policy

analysis, i.e. by adopting the loglinearization approach used elsewhere in this book. Details of this ap-

proach are found in Judd (1987). Second, it cannot be overemphasized that the extended Ramsey model

is still one of exogenous growth, i.e. per definition tax rates cannot affect the long-run growth rate in the

economy! It is time to move on to the endogenous growth literature.
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Figure 7.7: A Rise in the corporate tax in the extended Ramsey model

7.3 Endogenous growth models

In this section we discuss the effects of taxation on economic growth in the context of a number of key

endogenous growth models. In endogenous growth models the long-run growth rate is endogenously

determined, i.e. growth during transition and in the long run may depend on policy parameters such

as tax rates. During the first wave of growth theory (1955-1970) the concept of endogenous growth was

known but not taken seriously. In that literature, capital accumulation is seen as the engine of growth and

the existence of (sufficiently strong) diminishing returns to capital ensures that labour gets scarce and

the growth process is choked off in the long run.

In the second wave of growth theory (1985-) there are some authors who deny the existence of (suf-

ficiently strong) diminishing returns to capital in the long run. We call this the capital-fundamentalist

approach. Others see human capital accumulation as an additional engine of growth. Finally, yet others

see endogenous technological change as the key engine of growth. In this section we present a selective

overview of endogenous growth models and the effects of taxation.

7.3.1 Capital-fundamentalism

Within the group of capital-fundamentalist models one can distinguish at least two sub-groups. The first

sub-group derives its inspiration from an insight by Solow (1956, pp. 77-78) himself. If there is “easy

substitutability” between labour and capital, then labour never becomes an effective constraint to eco-

nomic growth because firms can substitute capital for labour indefinitely. Suppose that the production
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function features the following CES form:

Y (t) = F [K(t), L(t)]

≡
[

εK(t)(σKL−1)/σKL + (1 − ε)L(t)(σKL−1)/σKL

]σKL/(σKL−1)
, (A5.90)

where 0 < ε < 1, K (t) is the capital stock, L (t) is employment, and σKL is the (non-negative) substitution

elasticity between capital and labour. Substitution between capital and labour is labeled “difficult” if

0 ≤ σKL ≤ 1 and “easy” if σKL > 1.

We abstract from labour-augmenting technological change, assume that the labour force grows at a

constant exponential rate nL and that the savings rate, s, is constant (Solow-Swan model). Recall from

(A5.18) that the fundamental differential equation for the capital-labour ratio can then be written as:

gk (t) ≡
k̇(t)

k (t)
= s

f (k(t))

k (t)
− (δ + nL), (A5.91)

where k (t) ≡ K (t) /L (t), gk (t) is the growth rate in k (t), and y (t) ≡ Y (t) /L (t) = f (k (t)):

f (k(t)) ≡
[

1 − ε + εk(t)(σKL−1)/σKL

]σKL/(σKL−1)
. (A5.92)

It follows from (A5.91) that the path of average capital productivity, f (k (t)) /k (t), determines the path

for the growth rate of k (t). We can deduce from (A5.92) that with easy substitutability of capital and

labour (σKL > 1), average capital productivity satisfies:

lim
k(t)→0

f (k(t))

k(t)
= lim

k(t)→0

f ′(k(t))

1
= +∞, (A5.93)

lim
k(t)→∞

f (k(t))

k(t)
= εσKL/(σKL−1)

> 0. (A5.94)

The average product of capital is very high for low values of k (t), falls as k (t) increases (due to dimin-

ishing returns to capital), but bottoms out at a positive value given in (A5.94). In terms of Figure 7.8, the

curve s f (k (t)) /k (t) reaches a horizontal asymptote as more and more capital is accumulated (see the

dashed line). Provided the savings ratio is high enough, the asymptote lies above the line labeled δ+ nL,

and there is no steady-state for k (t) even in the very long run. If the economy is initially endowed with

a capital-labour ratio of k (0) then the growth rate in the capital-labour ratio is equal to the vertical dif-

ference between points A and B. In general, we obtain from (A5.91) and (A5.94) that the long-run (or

asymptotic) endogenous growth rate is given by:

gk (∞) = lim
k(t)→∞

[

s
f (k(t))

k (t)
− (δ + nL)

]

= sεσKL/(σKL−1) − (δ + nL) > 0. (A5.95)

In the long run, the y (t) /k (t) ratio is constant so that gy (∞) ≡ ẏ (t) /y (t) = gk (∞) and the level
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variables grow asymptotically according to gK (∞) = gY (∞) = gk (∞) + nL.

We call the asymptotic growth rate, gk (∞), “endogenous” because it depends on more things than

the growth rate of the population alone. A decrease in the savings rate, prompted for example by an

increase in the corporate tax (as in Subsection 7.2.1 above), will have one of two drastically different

effects. Case 1: if the shock leaves the horizontal asymptote in Figure 7.8 strictly above the δ + nL line

then gk (∞) stays positive and perpetual growth in k (t) is reduced but not eliminated. Case 2: if the

shock pushes the asymptote below the δ + nL line, then there will be a steady state in k (t) and gk (∞)

will be zero as in the standard Solow-Swan model.

One of the problems with this type of endogenous growth is that it runs foul of some well-known

stylized facts about the growth process. As the capital-labour ratio expands, labour becomes less and

less important and eventually the income share of capital goes to unity and that of labour goes to zero.

Indeed, denoting these shares by ωK (t) and 1 − ωK (t) respectively, we find from (A5.92):

ωK (t) ≡
k (t) f ′ (k (t))

f (k (t))
= ε

(
f (k (t))

k (t)

)(1−σKL)/σKL

. (A5.96)

By letting k (t) → +∞ in this expression and using (A5.94) we find:

lim
k(t)→∞

ωK (t) = ε lim
k(t)→∞

(
f (k (t))

k (t)

)(1−σKL)/σKL

= ε
(

εσKL/(σKL−1)
)(1−σKL)/σKL

= 1. (A5.97)

As was documented by Kaldor (1961, pp. 178-179), one of the stylized facts of economic growth is that

factor shares of capital and labour are both non-zero and fairly constant over time. For that reason we

do not pursue this type of capital-fundamentalist model any further.

The second type of capital-fundamentalist models looks for various reasons (other than easy sub-

stitutability between factors of production) for there to exist constant returns to scale with respect to

capital. Examples of this approach are Barro (1990), who argues that productive government spend-

ing can offset diminishing returns to private capital and Arrow (1962) and Romer (1986) who model a

learning-by-doing effect with spillovers across firms.

Here we study the approach suggested by Rebelo (1991). The key idea is that there is a “core” of

capital goods that is produced under constant returns to scale (CRTS) using only accumulable factors of

production. In the remainder of this subsection we show a simple example of the basic Rebelo (1991)

model. Just as in the Uzawa model, there are two production sectors. The capital good sector produces

investment goods using only existing capital under CRTS. The production function is thus:

I (t) = AIKI (t) , (A5.98)

where I (t) is output in the capital good sector (I (t) ≥ 0), AI is the general technology index, and KI (t)
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Figure 7.8: The capital-fundamentalist model

is capital use in the sector. The consumption good sector produces a good which is used for consumption

purposes, using existing capital and land under CRTS. Technology is assumed to be Cobb-Douglas:

C (t) = AC [KC (t)]ε T1−ε, (A5.99)

where 0 < ε < 1, C (t) is output in the consumption good sector, AC is the general technology index,

KC (t) is capital use in the sector, and T is land (a fixed factor).

Conceptually there are two types of capital in the model. Reproducible capital is capital which can be

accumulated over time and used in the two sectors:

K (t) = KI (t) + KC (t) , (A5.100)

K̇ (t) = I (t)− δK (t) , (A5.101)

where K (t) is the aggregate stock of reproducible capital and δ is its depreciation rate.11 The second

type of capital is non-reproducible capital, which is available in same quantity in each period, e.g. land T.

The institutional setting in the Rebelo model is standard. The market structure is competitive through-

out. There are competitive firms in both sectors and we argue on the basis of a representative firm per

sector. Firms rent production factors from the representative household, and there is perfect mobility of

capital between sectors.

11As Rebelo points out, K can also be interpreted as a composite of physical and human capital (e.g. skilled labour).
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The representative household is infinitely lived and is blessed with perfect foresight. The house-

hold’s life-time utility function is:

Λ (0) ≡
∫ ∞

0

C (t)1−1/σ − 1

1 − 1/σ
e−ρtdt, (A5.102)

where C (t) is (the flow of) consumption, σ is the intertemporal substitution elasticity (σ > 0), ρ is the

pure rate of time preference (ρ > 0), and Λ (0) is an index for life-time utility.

The household directly decides on the capital accumulation decision, i.e. it chooses I (t) in an optimal

fashion. The budget identity is given by:

C (t) + pI (t) I (t) = RT (t) T + RK (t)K (t) + Z (t) , (A5.103)

where RT (t) is the rental rate on land, RK (t) is the rental rate on capital, Z (t) is the lump-sum trans-

fer received from the government, and pI (t) is the relative price of the investment good (pI (t) ≡

PI (t) /PC (t) and we use the consumption good as the numeraire commodity and set PC (t) = 1).

The household chooses paths for C (t), I (t), and K (t) in order to maximize (A5.102) subject to

(A5.103) and (A5.101), some transversality conditions, and taking as given its initial stock of capital

(i.e. K (0) is predetermined at time t = 0). The first-order conditions for the household’s optimum are:12

C (t)−1/σ =
λ (t)

pI (t)
, (A5.104)

λ̇ (t) =

[

ρ + δ −
RK (t)

pI (t)

]

λ (t) , (A5.105)

where λ (t) is the marginal utility of wealth (i.e. the co-state variable associated with the capital accu-

mulation constraint (A5.101)). Equation (A5.104) is the Frisch demand for consumption, and (A5.105)

characterizes the optimal path for the marginal utility of wealth.

Firm behaviour is quite straightforward. The representative firm in the capital good sector has the

following profit function (expressed in terms of the consumption good):

ΠI (t) ≡ (1 − tI) pI AIKI (t)− RK (t)KI (t) , (A5.106)

where tI is an output tax. Competitive behaviour leads to dΠI/dKI = 0 or:

RK (t) = (1 − tI) pI (t) AI , (A5.107)

12Provided I (t) > 0, the current-value Hamiltonian is:

H ≡
C (t)1−1/σ − 1

1 − 1/σ
+ λ (t)

[
RT (t) T + RK (t)K (t) + Z (t)− C (t)

pI (t)
− δK (t)

]

,

where C (t) is the control variable, K (t) is the state variable, and λ (t) the co-state variable. The first-order conditions are
∂H/∂C (t) = 0 and −∂H/∂K (t) = λ̇ (t) − ρλ (t). If the constraint I (t) ≥ 0 becomes binding the household simply chooses
to set I (t) = 0 and to consume its net income.
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and as a result there are no excess profits (ΠI (t) = 0). Similarly, the representative firm in the consump-

tion good sector has the following profit function:

ΠC (t) ≡ (1 − tC) ACKC (t)ε T1−ε − RK (t)KC (t)− RT (t) T, (A5.108)

where tC is an output tax. Competitive behaviour leads to ∂ΠC/∂KC = ∂ΠC/∂T = 0 or:

RK (t) = ε (1 − tC) AC

(
KC (t)

T

)ε−1

, (A5.109)

RT (t) = (1 − ε) (1 − tC) AC

(
KC (t)

T

)ε

, (A5.110)

and ΠC (t) = 0.

Drawing things together we find that the following expressions make up (this version of) the Rebelo

model:

Ċ (t)

C (t)
= σ

[
ṗI (t)

pI (t)
−

λ̇ (t)

λ (t)

]

, (A5.111)

λ̇ (t)

λ (t)
= ρ + δ − (1 − tI) AI , (A5.112)

ṗI (t)

pI (t)
= (ε − 1)

[
φ̇ (t)

φ (t)
+

K̇ (t)

K (t)

]

, (A5.113)

Ċ (t)

C (t)
= ε

[
φ̇ (t)

φ (t)
+

K̇ (t)

K (t)

]

, (A5.114)

where φ (t) ≡ KC (t) /K (t) is the fraction of the capital stock which is employed in the consumption

good sector. Equation (A5.111) is obtained by differentiating (A5.104) with respect to time, and (A5.112)

is obtained by substituting (A5.107) into (A5.105). The derivation of (A5.113) is a little more complex.

First, we combine (A5.107) and (A5.109) to obtain the following expression:

pI (t) = ε
1 − tC

1 − tI

AC

AI

(
KC (t)

T

)ε−1

. (A5.115)

Next we differentiate (A5.115) with respect to time (under the assumption of time-invariant taxes, i.e.

ṫC (t) = ṫI (t) = 0) and obtain:

ṗI (t)

pI (t)
= (ε − 1)

K̇C (t)

KC (t)
. (A5.116)

Finally, since φ (t) ≡ KC (t) /K (t) we find by definition:

K̇C (t)

KC (t)
=

φ̇ (t)

φ (t)
+

K̇ (t)

K (t)
. (A5.117)

By substituting (A5.117) into (A5.116) we obtain (A5.113). Finally, equation (A5.114) is obtained by
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differentiating the production function (A5.99) with respect to time and noting (A5.117).

It is straightforward to show that the model defined in (A5.111)-(A5.114) exhibits endogenous growth.

We start by computing the growth rate in consumption. By combining (A5.113) and (A5.114) we find:

ṗI (t)

pI (t)
=

ε − 1

ε

Ċ (t)

C (t)
. (A5.118)

By using (A5.118) and (A5.112) into (A5.111) we find a linear equation in the growth rate in consump-

tion:

Ċ (t)

C (t)
= σ

[
ε − 1

ε

Ċ (t)

C (t)
− (ρ + δ) + (1 − tI) AI

]

. (A5.119)

Solving for the growth rate we find:

gC ≡
Ċ (t)

C (t)
=

εσ [(1 − tI) AI − (ρ + δ)]

σ + ε (1 − σ)
. (A5.120)

Several things are worth noting about (A5.120). First, the growth rate of consumption, gC, is time in-

variant, i.e. there is no transitional dynamics at all! Second, the tax rate on the investment good sector

decreases the rate of growth. This result stands in stark contrast with the predictions obtained on the

basis of exogenous growth models. Intuitively, increasing tI is equivalent to decreasing AI and this di-

rectly affects the engine of growth in this economy. Third, the tax rate on the consumption good sector

does not affect the rate of growth (just as in the exogenous growth literature). Increasing tC is equiva-

lent to decreasing AC and this only affects the level of consumption (but not its rate of growth) in this

economy. Intuitively, tC is like a lump-sum tax.

The next task is to determine the allocation of capital over the two sectors (i.e. φ (t)). By using (A5.98)

and (A5.101) we find:

K̇ (t)

K (t)
= AI [1 − φ (t)]− δ. (A5.121)

By combining (A5.121) with (A5.114) and noting that gC ≡ Ċ (t) /C (t) we derive the differential equa-

tion in φ (t):

φ̇ (t)

φ (t)
=

gC

ε
+ δ + AI [φ (t)− 1] . (A5.122)

Clearly, this is an unstable differential equation for which the only economically sensible solution is that

φ (t) adjusts at all times to ensure that φ̇ (t) = 0, i.e. the equilibrium level is given by:

1 − φ∗ =
gC + εδ

εAI
. (A5.123)
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In terms of Figure 7.9, the differential equation (A5.122) is plotted as the straight line CAL0. The unique

equilibrium is at E0 and any other values for φ (t) lead to economically nonsensical outcomes. An

increase in the tax on the investment sector, tI , leads to a decrease in gC and a downward shift in the

capital allocation line, say from CAL0 to CAL1 in Figure 7.9. The economy jumps from E0 to E1 and φ∗

increases, i.e. a larger proportion of capital is used in the consumption good sector as a result of the

shock.

Finally, the growth rate of net aggregate output can be determined as follows. We define net aggre-

gate output (in terms of the consumption good) as the sum of consumption and net investment:

Y (t) = C (t) + pI (t) [I (t)− δK (t)] . (A5.124)

By differentiating this expression with respect to time we obtain:

Ẏ (t)

Y (t)
=

C (t)

Y (t)

Ċ (t)

C (t)
+

pI (t) I (t)

Y (t)

[
İ (t)

I (t)
+

ṗI (t)

pI (t)

]

−
δpI (t)K (t)

Y (t)

[
K̇ (t)

K (t)
+

ṗI (t)

pI (t)

]

. (A5.125)

Since φ (t) = φ∗ is constant we know that I (t) /K (t) is constant. By also using (A5.113) and (A5.114)

we derive:

gY ≡
Ẏ (t)

Y (t)
=

C (t)

Y (t)
ε

K̇ (t)

K (t)
+

pI (t) I (t)

Y (t)

[
K̇ (t)

K (t)
+ (ε − 1)

K̇ (t)

K (t)

]

−
δpI (t)K (t)

Y (t)

[
K̇ (t)

K (t)
+ (ε − 1)

K̇ (t)

K (t)

]

= ε
K̇ (t)

K (t)
= gC. (A5.126)

Hence, net output grows at the same rate as consumption. The savings rate is constant.

We close this subsection with a number of remarks on the capital fundamentalist model. First, it is

abundantly clear what is the engine of growth in the model described above. The key model assumption

is the one underlying (A5.98): output in the investment sector is a linear function of accumulable capital.

Endogenous growth is thus almost a direct assumption (rather than a result) of the model. Second,

Rebelo (1991) has shown that the model can be generalized by disaggregating capital into physical and

human capital. Provided there is a core of capital goods that is produced under constant returns to scale

using no non-reproducible factors (directly or indirectly), the story remains valid (see also below).

Third, although there is no transitional dynamics in the present version of the Rebelo model, in some

variations of the capital fundamentalist model there is non-trivial transitional dynamics (thus adding

realism to the model).
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Figure 7.9: Intersectoral allocation of capital

7.3.2 Human capital

Four decades ago, Uzawa (1965) argued that (labour-augmenting) technological progress should not be

seen as some kind of “manna from heaven” but instead should be regarded as the outcome of the inten-

tional actions by economic agents employing scarce resources in order to advance the state of technolog-

ical knowledge. Uzawa (1965) formalized his notions by assuming that all technological knowledge is

embodied in labour and proposed a theory which endogenizes labour-augmenting productivity (A(t)

in (A5.1) above). Uzawa postulates the existence of a broadly defined educational sector which uses

resources in order to augment the state of knowledge in the economy. Somewhat surprisingly, Uzawa’s

ideas lay dormant for almost a quarter century until Lucas (1988) once again placed human capital at

the forefront of the economic growth process.

In this subsection we study a simplified version of the Lucas model due to Rebelo (1991, pp. 507-

511). Lifetime utility of the representative household is still as in (A5.102) above. There are two sectors

of production, namely a goods sector and an education sector. The goods sector produces consumption

and investment goods using the following Cobb-Douglas technology:

Y (t) = AY [KY (t)]1−γ [LY (t) H (t)]γ , (A5.127)

where 0 < γ < 1, Y (t) is aggregate output in the goods sector, KY (t) is the physical capital use, LY (t)

is the raw labour input, H (t) is human capital, and AY is an index of technology. Each unit of “raw”

labour has productivity level H (t) so LY (t) H (t) is the labour input in efficiency units. We define the
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following ratio:

φ (t) ≡
KY (t)

K (t)
, (A5.128)

and rewrite (A5.127) as:

Y (t) = AY [φ (t)K (t)]1−γ [LY (t) H (t)]γ . (A5.129)

In the education sector, capital and efficiency units of labour are used by the household to produce

new human capital. Human capital is embodied in the worker and appreciates at rate δ. The accumula-

tion of human capital proceeds according to the following technology:

Ḣ (t) = AH [(1 − φ (t)) K (t)]1−β [(L̄ − LY (t)) H (t)]
β − δH (t) , (A5.130)

where 0 < β < 1, Ḣ (t) is net investment in human capital, AH is an efficiency index, (1 − φ (t))K (t) is

the amount of capital used for human capital accumulation, L̄ is the (fixed) labour supply so (L̄ − LY (t)) H (t)

is the labour input (in efficiency units) devoted to the creation of new human capital, and δH (t) is the

depreciation on existing human capital.

The household directly decides on (i) the physical capital accumulation decision (choice of I (t)), (ii)

the human capital accumulation decision (choice of Ḣ (t)), and (iii) the consumption decision (choice of

C (t)). We interpret the education sector as an “in-house” activity, so the household rents out φ (t)K (t)

units of physical capital and LY (t) H (t) units of human capital to firms in the goods sector at respective

rental rates RK (t) and RH (t). The household budget identity is:

C (t) + I (t) = φ (t) RK (t)K (t) + RH (t) LY (t) H (t) + Z (t) , (A5.131)

where C (t) is consumption, I (t) is gross investment in physical capital, and Z (t) is the lump-sum

transfer received from the government. Total output in the goods sector equals:

Y (t) = C (t) + I (t) , (A5.132)

and the capital accumulation equation is given by:

K̇ (t) = I (t)− δK (t) , (A5.133)

where δ is the depreciation rate of physical capital.13

The household chooses paths for C (t), I (t), and Ḣ (t) in order to maximize (A5.102) subject to

(A5.131) and (A5.133), and some transversality conditions, and taking as given the initial stocks of the

13To keep things simple, human and physical capital are assumed to feature the same depreciation rate δ.
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two types of capital (i.e. K (0) and H (0) are both predetermined at time t = 0). The current-value

Hamiltonian for this problem is (provided I (t) > 0):

H ≡
C (t)1−1/σ − 1

1 − 1/σ

+ λ (t)
[

φ (t) RK (t)K (t) + RH (t) LY (t) H (t) + Z (t)− C (t)− δK (t)
]

+ µ (t)
[

AH [(1 − φ (t)) K (t)]1−β [(L̄ − LY (t)) H (t)]
β − δH (t)

]

, (A5.134)

where the control variables are C (t), LY (t), and φ (t), the state variables are K (t) and H (t), and the

co-state variable are λ (t) and µ (t). The key first-order conditions for the household’s optimum are:

C (t)−1/σ = λ (t) , (A5.135)

RH (t) = β
µ (t)

λ (t)
AH [kE (t)]1−β , (A5.136)

RK (t) = (1 − β)
µ (t)

λ (t)
AH [kE (t)]−β , (A5.137)

λ̇ (t)

λ (t)
= ρ + δ − φ (t) RK (t)− (1 − β)

µ (t)

λ (t)
(1 − φ (t)) AH [kE (t)]−β , (A5.138)

µ̇ (t)

µ (t)
= ρ + δ − RH (t) LY (t)

λ (t)

µ (t)
− β (L̄ − LY (t)) AH [kE (t)]1−β , (A5.139)

where kE (t) is the capital-labour ratio in the education sector:

kE (t) ≡
(1 − φ (t))K (t)

(L̄ − LY (t)) H (t)
. (A5.140)

The representative firm in the goods sector has the following profit function (in real terms):

Π (t) ≡ (1 − tY) AY [φ (t)K (t)]1−γ [LY (t) H (t)]γ − RK (t) φ (t)K (t)

− RH (t) LY (t) H (t) , (A5.141)

where tY is an output tax. The firm chooses its inputs in order to maximize profit. Competitive be-

haviour leads to the usual factor demands:

RK (t) = (1 − γ) (1 − tY) AY [kY (t)]−γ , (A5.142)

RH (t) = γ (1 − tY) AY [kY (t)]1−γ , (A5.143)

where kY (t) is the capital-labour ratio in the goods sector:

kY (t) ≡
φ (t)K (t)

LY (t) H (t)
, (A5.144)
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and excess profit is zero (Π (t) = 0) in the optimum.

We can now combine the various expressions. First, by combining (A5.136) and (A5.143) we obtain

the static expression determining the optimal allocation of human capital across the two sectors:

[

RH (t) =
]

β
µ (t)

λ (t)
AH [kE (t)]1−β = γ (1 − tY) AY [kY (t)]1−γ . (A5.145)

Similarly, by combining (A5.137) and (A5.142) we obtain the corresponding expression for the optimal

allocation of physical capital across sectors:

[

RK (t) =
]

(1 − β)
µ (t)

λ (t)
AH [kE (t)]−β = (1 − γ) (1 − tY) AY [kY (t)]−γ . (A5.146)

By combining (A5.145) and (A5.146) we can eliminate µ (t) /λ (t) to get:

β

1 − β
kE (t) =

γ

1 − γ
kY (t) . (A5.147)

It is optimal to maintain a constant ratio of capital intensities in the two sectors.

Second, by using (A5.137) and (A5.138) the dynamic evolution of the shadow price of physical capital

can be written as:

λ̇ (t)

λ (t)
= ρ + δ − RK (t) . (A5.148)

In a similar fashion, equations (A5.136) and (A5.139) can be combined to obtain an expression for the

dynamic evolution of the shadow price of human capital:

µ̇ (t)

µ (t)
= ρ + δ −

λ (t)

µ (t)
L̄RH (t) . (A5.149)

In the steady state, kE (t) and kY (t) are constant and it follows from (A5.145) and (A5.146) that

µ (t) /λ (t) is also constant, i.e.:

µ̇ (t)

µ (t)
=

λ̇ (t)

λ (t)
. (A5.150)

By combining (A5.148)-(A5.150) we find :

(

RK
)∗

=

(
λ (t)

µ (t)

)∗

L̄
(

RH
)∗

⇔

(1 − γ) (1 − tY) AY [k∗Y]
−γ = L̄βAH [k∗E]

1−β , (A5.151)

where the starred variables denote steady-state values, and we have used (A5.145) and (A5.146) to get

to the second line.
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We now have two expressions for kE and kY, namely equation (A5.147) which holds at all times,

and equation (A5.151), which holds in the steady state. By using these two expressions, the steady-state

capital-labour ratios in the two activities can be determined. After some manipulation we find:

k∗Y =

[

(1 − γ) (1 − tY) AY

βL̄AH

(
β (1 − γ)

γ (1 − β)

)1−β
]1/(1−β+γ)

, (A5.152)

k∗E =

[

(1 − γ) (1 − tY) AY

βL̄AH

(
β (1 − γ)

γ (1 − β)

)−γ
]1/(1−β+γ)

. (A5.153)

In view of (A5.152) and (A5.146), the steady-state rental rate on physical capital can be written as:

(

RK
)∗

= (1 − γ) (1 − tY) AY [k∗Y]
−γ

= Ψ [(1 − tY) AY]
θ (AH L̄)

1−θ
, (A5.154)

where Ψ and θ are defined as follows:

Ψ ≡
[

(1 − γ)(1−β)(1−γ) (1 − β)γ(1−β) ββγγγ(1−β)
]1/(1−β+γ)

> 0, (A5.155)

θ ≡
1 − β

1 − β + γ
, 0 < θ < 1. (A5.156)

We are now in the position to derive the steady-state growth rate in the economy. By differentiating

the Frisch demand for consumption, (A5.135), with respect to time we obtain the Euler equation:

g∗C ≡

(
Ċ (t)

C (t)

)∗

= −σ

(
λ̇ (t)

λ (t)

)∗

= σ
[(

RK
)∗

− δ − ρ
]

= σ
[

Ψ [(1 − tY) AY]
θ (AH L̄)

1−θ − δ − ρ
]

, (A5.157)

where we have used (A5.148) to get from the first to the second line, and (A5.154) to get to the third

line. According to (A5.157), consumption grows in the steady-state at an exponential rate g∗C. It is easy

to show that I (t), K (t), and H (t) all grow at the rate g∗C in the steady state. Similarly, net output,

Y ≡ C + I − δK, grows at that rate, i.e. g∗Y = g∗C.

Several things are worth noting about the steady-state growth rate given in (A5.157). First, an in-

crease in the tax rate levied on the goods sector (tY) leads to a decrease in the steady-state growth rate.

The shock reduces the steady-state rental rate on capital as the capital-labour ratio in both sectors falls

(see (A5.152)-(A5.153)). Intuitively, the private sector substitutes away from the production factor whose

production is taxed more heavily (i.e. away from capital). Second, it is clear that the engine of growth of

the human capital model is provided by the assumption of constant returns to scale in the production

of goods and new human capital, i.e. the production functions (A5.129)-(A5.130) both feature constant
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returns to scale in the accumulable factors K (t) and H (t). This is the “core property” mentioned above.

Third, a problematic aspect of the human capital model is the presence of a so-called scale effect. In

equation (A5.157), the steady-state growth rate of consumption depends inter alia on the size of the total

labour force (L̄). This means, of course, that large countries should grow faster than small countries do

(since L̄ is larger for the former). This prediction of the model is easily falsified empirically. We return

to the scale effect below in the context of the R&D model.

In closing this subsection we note that, in accordance with reality, there exists non-trivial transitional

dynamics in the model, i.e. during transition to the steady state the growth rates of the different variables

are time-dependent. The formal analysis of the transitional dynamics is quite complicated, however,

because there are two slow-moving state variables in the model, namely the stocks of physical and

human capital. The interested reader is referred to Bond, Wang, and Yip (1996) for a thorough discussion

of this issue.

7.3.3 Endogenous technology

In the previous subsection we have shown that the purposeful accumulation of human capital forms

the key ingredient of the Uzawa-Lucas theory of economic growth. In this subsection we briefly review

a branch of the (huge) literature in which the purposeful conduct of research and development (R&D)

activities forms the key source of growth.14 In order to demonstrate the key mechanism by which

R&D affects economic growth we follow Grossman and Helpman (1991, ch. 3) and Bénassy (1998) by

abstracting from physical and human capital altogether. In such a setting all saving by households is

directed towards the creation of new technology.

There are three production sectors in the economy. The final goods sector produces a homogeneous

good using varieties of a differentiated intermediate good as productive inputs. Production is subject

to constant returns to scale (in these inputs) and perfect competition prevails. The R&D sector is also

perfectly competitive. In this sector units of labour are used to produce blueprints of new varieties of the

differentiated input. Finally, the intermediate goods sector is populated by a large number of small firms,

each producing a single variety of the differentiated input, who engage in Chamberlinian monopolistic

competition (see also Chapter 7 for a detailed account of this market structure).

In the final goods sector the representative firm produces a homogenous good under conditions of

perfect competition. The technology is give by the following CES function:

Y(t) ≡ N(t)η

[

N(t)−1
∫ N(t)

0
X j(t)

1/µdj

]µ

, (A5.158)

where Y (t) is output, Xj (t) is intermediate input j, N (t) is the existing number of input varieties,

and µ and η are parameters satisfying µ > 1, and 1 ≤ η ≤ 2. Intuitively, if η is strictly greater than

14Key contributions to this literature are Paul Romer (1987, 1990), Aghion and Howitt (1998), and Grossman and Helpman
(1991).
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unity, then there are so-called returns to specialization as in Adam Smith’s famous pin factory example. If

intermediate inputs are more finely differentiated then firms can use a more “roundabout” production

process and reap productivity gains as a result (note that η < 2 is a mild and reasonable assumption

used later). The assumption that µ exceeds unity implies that the intermediate inputs are close but

imperfect substitutes in the production function.

The cost function associated with the technology (A5.158) is given by:

Cy
[
Pj (t) , Y (t) , N (t)

]
≡ cy

[
Pj (t) , N (t)

]
Y (t) , (A5.159)

where the unit cost function is defined as follows:

cy
[
Pj (t) , N (t)

]
≡ N(t)−η

[

N(t)µ/(1−µ)
∫ N(t)

0
Pj(t)

1/(1−µ)dj

]1−µ

, (A5.160)

and where Pj (t) is the price of input j. The firm’s pricing decision amounts to equating the output price,

PY (t), to marginal cost:

PY(t) ≡ cy
[
Pj (t) , N (t)

]
, (A5.161)

Finally, the derived demand for input j is obtained by applying Shephard’s Lemma to (A5.159):

Xj(t)

Y(t)
=

[

∂cy [·]

∂Pj (t)
=

]

N(t)(η−µ)/(µ−1)

(
Pj(t)

PY(t)

)µ/(1−µ)

, (A5.162)

for j ∈ [0, N(t)]. The key thing to note about (A5.162) is that the derived demand for input j is a

downward sloping function of the price of input j, with −µ/(µ − 1) representing the demand elasticity.

In the R&D sector labour is used to create blueprints for new input varieties. The sector is perfectly

competitive and technology features constant returns to scale:

Ṅ(t) = (1/kR)N(t)LR(t), (A5.163)

where Ṅ (t) is the output of the R&D sector (new varieties), kR is a productivity index, and LR (t) is

labour employed in the R&D sector. Note that (A5.163) incorporates an external effect in that labour

engaged in the R&D sector becomes more productive as more patents already exist. Intuitively, today’s

engineers “stand on the shoulders of giants.” Profit of the representative R&D firm is equal to:

ΠN (t) ≡ PN (t) Ṅ (t)− (1 − sR)W (t) LR (t) , (A5.164)

where PN (t) is the market price of a (new or existing) patent (determined below), sR is a wage subsidy

in the R&D sector, and W (t) is the wage rate. The firm chooses its labour input in order to maximize
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(A5.164) subject to (A5.163), taking as given its output price (PN (t)), its input price (W (t)), and the

existing number of product varieties (N (t)). The first-order condition sets price equal to marginal cost:

PN(t) =
kR (1 − sR)W(t)

N(t)
. (A5.165)

In the intermediate goods sector there are many small monopolistically competitive firms. Each firm

holds a patent allowing it to use labour to produce its own slightly unique variety of the intermediate

input. Technology is given by:

Xj(t) = (1/kX)Lj(t), (A5.166)

where Lj(t) is the labour input and kX is a technology index. Operating profit of firm j is defined as:

Πj(t) ≡ Pj(t)Xj(t)− W(t)Lj(t). (A5.167)

The firm chooses its output level, Xj(t), given the elastic demand for its output (A5.162) and the produc-

tion function (A5.166), and taking the actions of all other producers in the intermediate goods sector as

given (the Cournot-Nash assumption). As is familiar from the detailed discussion in Chapter 7 above,

the optimal choice of the firm is to set price according to a fixed markup over marginal production cost:

Pj(t) = µW(t)kX, (A5.168)

where µ is thus the gross monopoly markup. The model is completely symmetric, so all firms charge the

same price (Pj (t) = P̄j (t), produce the same quantity with the same amount of labour (Xj (t) = X̄ (t)

and Lj (t) = L̄j (t)), and make the same profits (Πj (t) = Π̄ (t)).

The representative household has the lifetime utility function (A5.102) and faces the following bud-

get identity:

PY(t)C(t) + PN(t)Ṅ(t) = W(t)L̄ + N(t)Π̄(t) + Z (t) , (A5.169)

where C (t) is consumption, L̄ is exogenous labour supply, N (t) Π̄ (t) is aggregate profit income re-

ceived from the intermediate goods sector, and Z (t) is lump-sum transfers received from the govern-

ment. The household saves by accumulating patents (PN(t)Ṅ(t)). By owning a patent, the household

receives the profit derived from it (Π̄(t)).

The household chooses C (t) and Ṅ (t) in order to maximize lifetime utility (A5.102) subject to

(A5.169), a transversality condition, and taking as given the initial stock of patents (i.e. N (0) is prede-

termined). Assuming an interior solution (with positive saving, i.e. Ṅ (t) > 0) the first-order conditions
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are given by:

Ċ(t)

C(t)
= σ [r(t)− ρ] , (A5.170)

r(t) =
Π̄(t) + ṖN(t)

PN(t)
, (A5.171)

where r(t) is the rate of return on blueprints.

The model is closed by two market clearing conditions. The final goods market clears provided

output equals consumption:

Y(t) = C(t). (A5.172)

The labour market equilibrium condition requires the total supply of labour to equal the sum of labour

demand in the intermediate and R&D sectors, i.e. LX(t) + LR(t) = L̄. Since LX(t) = kX N(t)X̄(t) and

LR(t) = kRṄ(t)/N(t) we can rewrite this labour market equilibrium condition as:

Ṅ(t)

N(t)
=

L̄ − kX N(t)X̄(t)

kR
, (A5.173)

where we assume implicitly that the differentiated sector is not too large and thus does not absorb all

available labour (i.e. the numerator on the right-hand side is strictly positive).

The growth rate in the R&D model can be derived as follows. First we note some intermediate

results:

Π̄(t)

PN(t)
= (µ − 1)

(
kX N(t)X̄(t)

kR (1 − sR)

)

, (A5.174)

ṖN(t)

PN(t)
= (η − 2)

(
Ṅ(t)

N(t)

)

, (A5.175)

C(t) = N(t)η−1N(t)X̄(t). (A5.176)

Assuming a time-invariant subsidy (ṡR (t) = 0) we obtain the following expressions for the various

growth rates:

γC(t) = σ

[(
µ − 1

kR (1 − sR)

)

LX(t) + (η − 2)γN(t)− ρ

]

, (A5.177)

γC(t) = (η − 1)γN(t) +
L̇X(t)

LX (t)
, (A5.178)

γN(t) =
L̄ − LX(t)

kR
. (A5.179)
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By substituting (A5.177) and (A5.179) into (A5.178) we obtain a differential equation for LX (t):

L̇X(t)

LX (t)
=

σ (µ − 1)

kR (1 − sR)
LX(t)− σρ + [σ(2 − η) + (η − 1)]

(
LX (t)− L̄

kR

)

. (A5.180)

It follows from that:

∂

∂LX (t)

[
L̇X(t)

LX (t)

]

=
σ (µ − 1)

kR (1 − sR)
+

[σ(2 − η) + (η − 1)]

kR
> 0, (A5.181)

where we have used the fact that µ > 1 and 1 ≤ η < 2. Hence, (A5.180) is an unstable differential equa-

tion for which the only economically sensible solution is the steady-state solution, for which L̇X (t) = 0

and LX (t) = L∗
X . By imposing the steady state in (A5.180) we obtain an expression for the equilibrium

amount of labour employed in the R&D sector and thus (by (A5.179)) for the rate of innovation:

γN =
L̄ − L∗

X

kR
=

σ(µ − 1)(L̄/kR)− σρ (1 − sR)

σ (µ − 1) + [σ (2 − η) + η − 1] (1 − sR)
> 0. (A5.182)

Finally, by using (A5.178) and (A5.172) we find the growth rates for C (t), and Y (t):

γC = γY = (η − 1)γN . (A5.183)

The innovation rate, γN , increases with the monopoly markup (µ), the R&D subsidy (sR), and the size

of the labour force (L̄), and decreases with the rate of time preference (ρ). The effect on the innovation

rate of the intertemporal substitution elasticity is:

∂γN

∂σ
=

(η − 1) (1 − sR) γN

σ [σ (µ − 1) + [σ (2 − η) + η − 1] (1 − sR)]
. (A5.184)

Provided the returns to specialization are operative (so that η > 1), an increase in the willingness of the

representative household to substitute consumption across time raises the rate of innovation (∂γN/∂σ >

0). As is evident from (A5.183), the common growth rate of consumption and output also depends

critically on whether or not the technology in the final goods sector is characterized by returns from

specialization.

We end this subsection with a number of remarks on the R&D model. First, it is clear from the

discussion that there is no transitional dynamics in this version of the R&D model. This is not surprising

because there is no physical and/or human capital in the model. Second, the engine of growth in the

model is the production function in the R&D sector, i.e. equation (A5.163) above. This expression relates

a growth rate to the absolute amount of labour employed in the R&D sector (i.e. γN (t) = LR (t) /kR).

So, just as in the capital-fundamentalist model, endogenous growth is more a direct assumption than a

result of the model.

Third, like the human capital model, the R&D model has the problematic property that the growth
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rate depends on the scale of the economy (L̄ in this case). Hence, large countries should grow faster

than small countries. This is not observed in reality. Jones (1995) therefore removes the scale effect by

replacing the R&D technology (A5.163) by the following expression:

Ṅ(t) = (1/kR)LR(t)N(t)φ1 [L̄R(t)]
φ2−1

, (A5.185)

where L̄R is average R&D labour per firm in the R&D sector. The R&D technology has changed in

two aspects. First, we used to have φ1 = 1 but now we assume 0 < φ1 < 1. Intuitively, there are

diminishing return to “giants’ shoulders.” Second, we used to have φ2 = 1 but now we assume 0 < φ2 ≤

1. Jones defends this assumption by appealing to a duplication externality: individual R&D firms think

the production function is linear (in the labour input), but in actuality it features diminishing returns to

labour. Using the more general R&D technology, it is possible to derive the following expressions for

the rate of innovation and the growth rates in consumption and output: γN (t) = γC (t) = γY (t) = 0.

Hence, we reach the striking conclusion that by eliminating the scale effect we are back in the realm of

exogenous growth and the Solow model.
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Part II

Normative economics
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Chapter 8

Introduction to normative public

economics

The purpose of this chapter is to discuss the following topics:

• What is normative public economics and how does it differ from positive public economics?

• The two fundamental theorems of welfare economics.

• Social welfare function.

• First-best versus second-best.

8.1 Introduction

Up to this point in the book the focus has been on positive economics, i.e. we have studied the econ-

omy as it is (rather than as it should be). In particular, we have discussed a number of key issues in

positive economics. For example, in Chapter 2 we studied how a household determines consumption

and labour supply in the presence of a tax system, in Chapter 3 we looked at the effects of taxation on

household savings decisions, and in Chapter 4 we extended the discussion by incorporating the effects

of uncertainty on household consumption and portfolio decisions. In Chapter 5 we studied the effect of

the corporate tax system on the typical firm’s real and financial decisions, and in Chapters 6 and 7 we

looked at the general equilibrium repercussions of taxation under perfect and imperfect competition.

Finally, in Chapter 8 the effect of taxation on the economic growth process was studied. In all of these

chapters we took the existing tax system for granted and determined how households, firms, and the

economy as a whole react to this system.

In the next set of chapters we change tack and look at questions in normative economics. What shape

should the tax system have? We start answering this question by studying the problem of optimal

267
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indirect taxation in Chapter 10. The issue there is to determine the socially optimal commodity tax system.

Should luxuries be taxed heavily or not? Should necessities be taxed at all, or should they even be

subsidized? Those are some of the issues discussed in that chapter.

In Chapter 11 we study the optimal structure of direct taxation. The key issue in the determination of

the optimal income tax system is the amount of information the policy maker is assumed to possess. Fi-

nally, in Chapter 12 we study so-called public goods and externalities. Which goods should be provided

by the government, and which by the private sector? What is the appropriate way to provide public

goods under various tax systems? How should the government react to external effects?

The common theme in Chapters 10-12 is thus an explicit welfare-theoretic stance. We must be able

to somehow provide a social ranking between alternative states the economy could be in. Central in

normative economics is the so-called Social Welfare Function (SWF) first proposed by Bergson (1938) and

Samuelson (1947). A typical example of an individualistic SWF is:

SW = Ψ
(

U1, U2, . . . , UH
)

, (A5.1)

where SW is an indicator for social welfare, Uh is the utility level of individual household h (where

h = 1, 2, . . . , H), and Ψ (·) is some function featuring positive partial derivatives, i.e. Ψh ≡ ∂Ψ/∂Uh
> 0

for all h (every household has at least some weight in social welfare). Note that we call the SWF in (A5.1)

individualistic because its only arguments are the individual utility functions. A comparison between

alternatives states only involves individual utility levels in those states. The SWF confers social (or

ethical) weights on the different individuals and, since Ψh > 0, social welfare rankings made with

the SWF honour the Pareto Principle: if one individual’s utility level increases (decreases) and all other

individual utility levels are held constant, then SW increases (decreases). The SWF goes beyond the

Pareto Principle, however, because it assumes that gains and losses can be compared. In that sense

it also goes beyond the “New Welfare Economics” of the 1930s which denied the validity of making

interpersonal comparisons. In defense of the SWF approach one could argue that in most cases the

Pareto Principle simply does not provide sufficient guidance for public policy decisions as it contains an

inherent bias to maintain the status quo.

Different types of social welfare functions have been used in the literature. In a so-called Benthamite

SWF, social welfare is the sum of individual utility levels (or a positive linear transformation of this

sum):1

SW =
H

∑
h=1

Uh. (A5.2)

Technically, in this type of formulation, every household has the same (constant) weight in social wel-

1This form of the social welfare function is named after the classical economist Jeremy Bentham (1748-1832). To him is at-
tributed the idea that “it is the greatest happiness of the greatest number that is the measure of right and wrong” (cited by
Harrison (1987, p. 226)).
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fare. At the other extreme, in a so-called Rawlsian SWF, social welfare is the welfare of the worst-off

individual (“maxi-min”):2

SW = min
h

[

U1, U2, . . . , UH
]

. (A5.3)

In this formulation only the worst-off individual has a positive weight in social welfare. Atkinson and

Stiglitz (1980, p. 340) suggest the following generalized iso-elastic SWF:

SW =
H

∑
h=1

(

Uh
)1−1/ζ

− 1

1 − 1/ζ
, (A5.4)

where ζ (≥ 0) measures the degree of substitutability between the Uh’s. This formulation is quite con-

venient because it nests several special case. Indeed, by letting ζ → 0 in (A5.4) we obtain the Rawlsian

SWF (A5.3), for ζ = 1 we obtain a logarithmic SWF, and for ζ → ∞ we obtain the Benthamite SWF

(A5.2). For pragmatic reasons we will often use the iso-elastic formulation (A5.4) below.

8.2 Brief overview of welfare economics

In order to prepare for things to come, this section presents a brief and selective overview of basic welfare

economics.3 We use the general equilibrium model of Samuelson (1947) as presented by Tresch (2002,

ch. 2). The mathematical model is kept fairly general. There are H households, F production factors,

and G goods. The key elements of the model are individual preferences, firm production technologies,

and market clearing.

Individual preferences of household h are defined as follows:

Uh = Uh
(

Xh
1 , . . . , Xh

G, Vh
1 , . . . , Vh

F

)

, (A5.5)

where Uh is utility of household h (h = 1, 2, . . . , H), Xh
g is consumption of good g by household h

(g = 1, 2, . . . , G), and Vh
f is the supply of production factor f by household h ( f = 1, 2, . . . , F).

The production technology for good g is assumed to be given by:

Yg = Fg
(

Z
g
1 , . . . , Z

g
F

)

, (A5.6)

where Yg is the aggregate production of good g, Fg (·) is the production function for good g, and Z
g
f is

factor f used in the production of good g.

2This type of SWF function is named in honour of the American philosopher, John Rawls (1921-2002). In Rawls (1971) he
derives the maxi-min rule as the outcome of decision making under a “veil of ignorance” (about one’s own position).

3Interested readers are referred to Nath (1969), Boadway and Bruce (1984), Myles (1995), and Mas-Colell, Whinston, and Green
(1995) for further details.
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The market clearing conditions are as follows. For the goods markets the clearing conditions are:

Yg =
H

∑
h=1

Xh
g , (for g = 1, 2, . . . , G), (A5.7)

where the left-hand side is aggregate production and the right-hand side is total demand. Since there

are G different goods markets, there are in total G goods market clearing conditions.

The factor market clearing conditions are:

H

∑
h=1

Vh
f =

G

∑
g=1

Z
g
f , (for f = 1, 2, . . . , F), (A5.8)

where the left-hand side is the total supply of factor f and the right-hand side is the total demand for

that factor. Note, there are F factors and thus F factor market clearing equations.

The general equilibrium model consists of equations (A5.5)-(A5.8).

8.2.1 Efficiency: Pareto optimality

An important concept in welfare economics is that of Pareto optimality. A given allocation of resources is

Pareto optimal if no one consumer can be made better off by a reallocation of resources without at the

same time making at least one other consumer worse off. The locus of Pareto-optimal allocations defines

the so-called Utility Possibility Frontier (UPF). In Figure 8.1 such a UPF is illustrated for the case with only

two households (H = 2). Note that the UPF may have a very irregular shape even if individual utility

functions are well-shaped. This is because it is an envelope around infinitely many so-called Point UPF’s

which are each associated with a particular point of the Production Possibility Frontier, i.e. a particular

bundle of goods (see, e.g., Nath (1969, p. 20)).

In terms of Figure 8.1, point A is a Pareto optimal point (as are all other points on the UPF by def-

inition). Points within the UPF are not Pareto optimal. At point C, for example, it is possible to keep

household 1 equally well of and make household 2 strictly better off (vertical move). Conversely, it is

possible to move horizontally and make household 1 strictly better off whilst keeping household 2’s

utility the same. In fact any move in north-easterly direction makes both households strictly better off.

Finally, points which lie beyond the UPF are unattainable (e.g. point B).

In formal terms, the set of all Pareto optimal allocations can be characterized as follows. We focus

on an arbitrary household, say household h = 1, and hold every other household’s utility constant, i.e.

Uh = Uh
0 for h = 2, . . . , H. Then we maximize household 1’s utility subject to the restrictions, i.e. the

social planner chooses Xh
g , Vh

f , Z
g
f , Yg in order to maximize:

U1 = U1
(

X1
1 , . . . , X1

G, V1
1 , . . . , V1

F

)

, (A5.9)
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Figure 8.1: The utility possibility frontier

subject to (A5.6)-(A5.8) and:

Uh
0 = Uh

(

Xh
1 , . . . , Xh

G, Vh
1 , . . . , Vh

F

)

, (for h = 2, . . . , H). (A5.10)

Equation (A5.10) is the set of constraints that keeps all households other than household 1 equally well

off, (A5.6) represents the constraints imposed by existing technology, (A5.7) ensures goods market clear-

ing, and (A5.8) ensures factor market clearing.

The Lagrangian for this social optimization problem is defined as follows:

L ≡ λ1U1
(

X1
1 , . . . , X1

G, V1
1 , . . . , V1

F

)

+
H

∑
h=2

λh

[
Uh
(

Xh
1 , . . . , Xh

G, Vh
1 , . . . , Vh

F

)

− Uh
0

]
+

G

∑
g=1

µg

[
Yg − Fg

(

Z
g
1 , . . . , Z

g
F

) ]

+
G

∑
g=1

νg

[
H

∑
h=1

Xh
g − Yg

]

+
F

∑
f=1

ξ f

[
H

∑
h=1

Vh
f −

G

∑
g=1

Z
g
f

]

, (A5.11)

where the Lagrange multipliers are λh (for h = 2, . . . , H), µg (for g = 1, . . . , G), νg (for g = 1, . . . , G),

and ξ f (for f = 1, . . . , F). In total equation (A5.11) thus features (H − 1) + 2G + F Lagrange multipliers.

Note that in the first line of (A5.11) we define an auxiliary variable for household 1, λ1, which we set

equal to unity (λ1 = 1). This is done to cut down on notation below.

The first-order necessary conditions (assuming an interior solution) are the constraints and the fol-

lowing. For the goods demands there are G × H equations:

∂L

∂Xh
g

= λh
∂Uh

∂Xh
g

+ νg = 0, (A5.12)
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for the factor supplies there are H × F equations:

∂L

∂Vh
f

= λh
∂Uh

∂Vh
f

+ ξ f = 0, (A5.13)

for the output decisions there are G equations:

∂L

∂Yg
= µg − νg = 0, (A5.14)

and for the factor demands there are F × G equations:

∂L

∂Z
g
f

= −µg
∂Fg

∂Z
g
f

− ξ f = 0. (A5.15)

Although these conditions look rather forbidding, we can eliminate the various Lagrange multipliers

and derive the condensed statement of the necessary conditions for the Paretian optimum. We look at

the following pairings. First, for any given arbitrary household h we derive:

νg1

νg2

=
∂Uh/∂Xh

g1

∂Uh/∂Xh
g2

, (A5.16)

ξ f1

ξ f2

=
∂Uh/∂Vh

f1

∂Uh/∂Vh
f2

, (A5.17)

ξ f

νg
=

∂Uh/∂Vh
f

∂Uh/∂Xh
g

. (A5.18)

Equation (A5.16) is obtained by using (A5.12) for any two goods g1 and g2. It says that the marginal rate

of substitution (MRS) between any two consumption goods g1 and g2 (the right-hand side) is the same

for all households h (since the left-hand side does not feature an h-index). Graphically this condition can

be illustrated for the case with two goods (G = 2) and two households (H = 2) with the aid of Figure

8.2. In that figure the total availability of the two goods is held constant. The origin for household 1 is

O1 and that for household 2 is O2. The slope of each indifference curve represents the MRS between the

two goods at that point. Points A, B, C, and D are such that the indifference curves have the same slope

for the two households, i.e. they are all points of efficient exchange. Point E, in contrast, is inefficient

in exchange because the MRS is not the same for both households. At point A, household 2 is equally

well of as at E but household 1 is strictly better off. The dashed line connecting O1 and O2 is the contract

curve, i.e. the locus of points that are efficient in exchange.

Equation (A5.17) is obtained by using (A5.13) for any two factors f1 and f2. It says that the MRS

between any two supplied factors f1 and f2 (right-hand side) is the same for all households h. Finally,

equation (A5.18) is obtained from (A5.12) and (A5.13). It shows that the MRS between any supplied

factor f and any consumption good g is the same for all households h. In principle one could draw
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Figure 8.2: Efficient exchange

diagrams similar to Figure 8.2 to visualize equations (A5.17) and (A5.18) but this is left as an exercise to

the reader.

Second, on the production side we derive:

1 =
µg1

µg2

∂Fg1 /∂Z
g1

f

∂Fg2 /∂Z
g2

f

=
νg1

νg2

∂Fg1 /∂Z
g1

f

∂Fg2 /∂Z
g2

f

(A5.19)

ξ f1

ξ f2

=
∂Fg/∂Z

g
f1

∂Fg/∂Z
g
f2

. (A5.20)

Equation (A5.19) is obtained by using (A5.14) and (A5.15) for any two goods g1 and g2. It requires the

social value of the marginal product of factor f to be the same for any two goods g1 and g2. Equation

(A5.20) is derived by using (A5.15) for any two factors f1 and f2. It requires the marginal rate of technical

substitution (MRTS) between any two factors f1 and f2 to be the same for all goods g. Graphically

condition (A5.20) can be illustrated for the case with two factors (F = 2) and two goods (G = 2) with

the aid of Figure 8.3. In that figure total supplies of the two factors is held constant. The origin for

good 1 is O1 and that for good 2 is O2, and the factors are labour (L) and capital (K). The slope of each

isoquant represents the MRTS between the two factors at that point. Points A, B, C, and D are such that

the isoquants have the same slope for the two goods, i.e. they are all points of efficient production. Point

E, in contrast, is inefficient in production because the MRTS is not the same for both goods. By shifting

from point E to point A, production of good 2 is kept constant but production of good 1 is increased.

The dashed line connecting O1 and O2 is the contract curve, i.e. the locus of points that are efficient in

production. This contract curve can also be plotted directly in goods space as in Figure 8.4 In that figure,

points B and D are both efficient in production, i.e. they both lie on the transformation curve in Figure

8.4 and on the contract curve in Figure 8.3.
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Third, we can now combine even further. By using (A5.16) and (A5.19) we find:

[
νg1

νg2

=

]
∂Uh/∂Xh

g1

∂Uh/∂Xh
g2

=
∂Fg2 /∂Z

g2

f

∂Fg1 /∂Z
g1

f

, (A5.21)

i.e. the MRS between goods g1 and g2 (left-hand side of (A5.21)) must be equated to the marginal rate

of transformation (MRT) between these two goods (right-hand side). Graphically, the marginal rate of

transformation is represented by (minus) the slope of the transformation curve as drawn in Figure 8.4.

Intuitively, it represents the marginal rate at which one good can be transformed into another good by

re-allocating any factor.4 The condition (A5.21) has been illustrated in Figure 8.5 for the case of two

goods and two households. The efficient production point is on the transformation curve at point AP

and the efficient consumption point is on the contract curve O1AP, say at point AC (the indifference

curves tangent at that point are not shown to avoid cluttering the diagram). The lines through AC and

AP are tangent (to each other and to the transformation curve). Total production is (Y1, Y2)A, household

1 consumes
(
X1

1 , X1
2

)

A
and household 2 consumes

(
X2

1 , X2
2

)

A
.

Fourth, from (A5.17) and (A5.20) we find:

[

ξ f1

ξ f2

=

]
∂Uh/∂Vh

f1

∂Uh/∂Vh
f2

=
∂Fg/∂Z

g
f1

∂Fg/∂Z
g
f2

, (A5.22)

4Technically, we get from the first equality in (A5.19) that:

∂Fg2 /∂Z
g2
f

∂Fg1 /∂Z
g1
f

=
µg1

µg2

,

where the right-hand side is independent of which factor is shifted. Hence, the left-hand side is the MRT between goods g1 and
g2.
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i.e. for any good g, the common MRS between any two supplied factors f1 and f2 must be equated to

the marginal rate of technical substitution (MRTS) between these two factors in production of that good.

Finally, from (A5.18) and (A5.14)-(A5.15) we find:

[
ξ f

νg
=

] ∂Uh/∂Vh
f

∂Uh/∂Xh
g

= −
∂Fg

∂Z
g
f

, (A5.23)

i.e. the common MRS between any consumed good g and any supplied factor f is equal to the marginal

product of that factor f in producing that good g.

Of course, the first-order necessary conditions stated above solve for just a single point on the UPF,

namely that point conditional upon the utility levels held constant for households h = 2, . . . , H. Hence,

by changing one of these household’s utility level we can re-derive the Pareto optimal allocation and

obtain another point of the UPF (assuming feasibility etcetera). But there are infinitely many ways to do

this so what we end up with is all the points on the UPF. The crucial thing to note is that the planning

problem does not pin down a single optimal point on the UPF. By definition all allocations on the UPF

are Pareto optimal. It is clear that Pareto optimality is too weak a criterion for public decision making.

Using this principle one cannot even decide between points like D and A (or E and A) in Figure 8.1.

Most people in the street would probably agree that giving some utility to both agents (point A) is to be

preferred to giving all to either person 1 (point E) or person 2 (point D). But the Pareto principle does

not give us that policy prescription.

8.2.2 Equity: SWF and the optimal distribution

By postulating a SWF, the social planning problem does provide conditions for both efficiency and op-

timal distributional choices. Assume that the SWF is written in general format as in (A5.1) above. The

social planner now chooses Xh
g , Vh

f , Z
g
f , Yg (for f = 1, . . . , F, g = 1, . . . , G, and h = 1, . . . , H.) in order

to maximize social welfare (A5.1) subject to the individual utility functions (A5.5), the production tech-

nology (A5.6), the goods market clearing conditions (A5.7), and the factor market clearing conditions

(A5.8). The Lagrangian for this problem is:

L ≡ Ψ
[

U1
(

X1
1 , . . . , X1

G, V1
1 , . . . , V1

F

)

, . . . , UH
(

XH
1 , . . . , XH

G , VH
1 , . . . , VH

F

) ]

+
G

∑
g=1

µg

[
Yg − Fg

(

Z
g
1 , . . . , Z

g
F

) ]

+
G

∑
g=1

νg

[
H

∑
h=1

Xh
g − Yg

]

+
F

∑
f=1

ξ f

[
H

∑
h=1

Vh
f −

G

∑
g=1

Z
g
f

]

, (A5.24)

where the Lagrange multipliers are µg (for g = 1, . . . , G), νg (for g = 1, . . . , G), and ξ f (for f = 1, . . . , F),

i.e. there are 2G + F Lagrange multipliers in all.

The first-order necessary conditions (assuming an interior solution) are the constraints and (a) for
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the good demands (G × H equations):

∂L

∂Xh
g

=
∂Ψ

∂Uh

∂Uh

∂Xh
g

+ νg = 0, (A5.25)

(b) for the factor supplies (H × F equations):

∂L

∂Vh
f

=
∂Ψ

∂Uh

∂Uh

∂Vh
f

+ ξ f = 0, (A5.26)

(c) for the output decisions (G equations):

∂L

∂Yg
= µg − νg = 0, (A5.27)

and (d) for the factor demands (F × G equations):

∂L

∂Z
g
f

= −µg
∂Fg

∂Z
g
f

− ξ f = 0. (A5.28)

In principle we could redo the different pairings leading to (A5.16)-(A5.23). Fortunately, this is not

necessary because these conditions are all still valid, the social planner selects a point on the UPF! This is

what is meant by the notion of first-best welfare analysis. The policy maker has a sufficient number of

suitable policy tools by which it can select any point along the UPF (Tresch, 2002, p. 67).

The only interpersonal equity conditions are obtained by using (A5.25) and (A5.26) and comparing

different households, say h1and h2. From (A5.25) we find for any good g the following condition must

hold:

[
−νg =

] ∂Ψ

∂Uh1

∂Uh1

∂Xh1
g

=
∂Ψ

∂Uh2

∂Uh2

∂Xh2
g

. (A5.29)

According to (A5.29), interpersonal equity is achieved if all goods are distributed such that on the margin

the increase in social welfare is the same no matter who consumes the last unit of the good. Similarly,

by using (A5.26) we find that for any factor f the following condition must hold:

[

−ξ f =
] ∂Ψ

∂Uh1

∂Uh1

∂V
h1
f

=
∂Ψ

∂Uh2

∂Uh2

∂Vh2
f

. (P10)

Hence, all factor supplies should be set such that on the margin the increase in social welfare is the same

no matter who supplies the last unit of the factor.

In Figure 8.6 the determination of the first-best social optimum is illustrated for the two household

case. Suppose that the minimal-government solution would be at point A, where the distribution of

welfare is rather uneven. The associated level of social welfare is SWA. Although point A is Pareto-
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Figure 8.6: The first-best social optimum

optimal, the social planner can improve the social outcome by choosing a tangency between the UPF

and a SWF. This tangency occurs at point E, where social welfare is SWE (greater than SWA). How is the

redistribution engineered? The only way it can be done is if the social planner has access to lump-sum

redistribution instruments (i.e. taxes/subsidies which do not themselves introduce inefficiencies into the

economy and thus keep the economy on the UPF).

8.2.3 Basic theorems of welfare economics

The basic theorems of welfare economics provide important guidance concerning the link between the

notion of Pareto efficiency and the outcome produced in the decentralized market economy. Atkinson

& Stiglitz (1980, p. 343) state these theorems as follows:

First Theorem of Welfare Economics: If (i) households and firms are perfect competitors and thus take

prices for all goods and factors as given, (ii) there is a full set of markets, and (iii) there is perfect

information, then a competitive equilibrium (if it exists) is Pareto efficient.

Second Theorem of Welfare Economics: If (i) household indifference maps and firm production sets

are convex, (ii) there is a full set of markets, (iii) there is perfect information, and (iv) lump-sum

taxes/transfers can be carried out costlessly, then any Pareto-efficient allocation can be achieved

as a competitive equilibrium with appropriate lump-sum transfers and taxes.

The importance of the availability of lump-sum taxes and transfers cannot be overstated. Indeed

if such taxes and transfers are not available (or not sufficiently flexible) then one enters the much more

complex (but also more realistic) realm of second-best welfare economics. In such an analysis there is gener-

ally a conflict between achieving efficiency (reaching the UPF) and equity (achieving a fair distribution
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Figure 8.7: The second-best social optimum

of welfare). Figure 8.7, which is adapted from Tresch (2002, p. 73), shows in heuristic terms what is go-

ing on. Say the initial position is at point A. If the policy maker has the required lump-sum instruments

he can ensure that the first-best equilibrium at E can be attained (first-best case). In contrast, if the policy

maker does not have the (sufficiently flexible) lump-sum instruments, the effective set of allocations that

can be reached is represented by the shaded area. Of course point A is in that area but point E is not.

The second-best social optimum is then represented by point B, i.e. the point that can be reached from the

initial situation A and has a higher social welfare level than at point A (SWB > SWA but SWB < SWE).

As we shall see time and again in the coming chapters, much of actual policy making is concerned with

second-best situations.

We close this subsection by demonstrating the consequences of the second welfare theorem within

the context of our simple general equilibrium model. The task at hand is to show how the competitive

decentralized economy gives rise to exactly the same condition that determine Pareto efficiency. The

decentralized economy has the following key features. First, household h has the utility function (A5.5)

and faces the following budget restriction:

G

∑
g=1

PgXh
g + Th =

F

∑
f=1

W f Vh
f , (A5.30)

where Pg is the market price of good g, Th is a household-specific lump-sum tax (or transfer), and W f

is the market price of factor f . Second, the representative firm producing good g is a price taker in its
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output market and all its input markets and has the following profit function:

Πg ≡ PgYg −
F

∑
f=1

W f Z
g
f , (A5.31)

where Πg is profit and where technology is given by (A5.6) above. Third, it is assumed that all markets

clear, i.e. both (A5.7) and (A5.8) hold.

It can now be shown that the decentralized optimizing decisions by households and firms give rise

to the first-order conditions (A5.16)-(A5.23) stated above. Household h chooses Xh
g and Vh

f in order to

maximize utility (A5.5) subject to the budget constraint (A5.30), taking as given Pg, W f , and Th. The key

first-order conditions are:

Pg1

Pg2

=
∂Uh/∂Xh

g1

∂Uh/∂Xh
g2

, (A5.32)

−W f1

−W f2

=
∂Uh/∂Vh

f1

∂Uh/∂Vh
f2

, (A5.33)

−W f

Pg
=

∂Uh/∂Vh
f

∂Uh/∂Xh
g

. (A5.34)

Equations (A5.32)-(A5.34) are the market-based counterparts to (A5.16)-(A5.18) above, with Pg replacing

νg and −W f replacing ξ f .

The firm producing good g chooses Yg and Z
g
f in order to maximize profit (A5.31) subject to the

production function (A5.6) and taking as given Pg and W f . The key first-order conditions for the firm

producing good g are:

Pg
∂Fg

∂Z
g
f

= W f . (A5.35)

Using (A5.35) for a single factor and any two goods we obtain the counterpart to (A5.19):

[

W f

W f
=

]

1 =
Pg1

∂Fg1 /∂Z
g1

f

Pg2 ∂Fg2 /∂Z
g2

f

, (A5.36)

where Pg again replaces νg. Similarly, by using (A5.35) for a single good and any two factors we obtain

the counterpart to (A5.20):

−W f1

−W f2

=
∂Fg/∂Z

g
f1

∂Fg/∂Z
g
f2

, (A5.37)

where −W f replacing ξ f . The counterparts to (A5.21)-(A5.23) are now already established. It follows

that the competitive market solution satisfies exactly the efficiency conditions for a Pareto optimum.

Note that the transfers, Th, do not feature in any of the first-order conditions (A5.32)-(A5.37). Hence, the
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policy maker can use them for redistributive purposes to select a particular point on the UPF.
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Chapter 9

The structure of indirect taxation

The purpose of this chapter is to discuss the following topics in the theory of optimal commodity taxa-

tion:

• How should different commodities be taxed? Uniformly or at different rates?

• If at different rates, which commodities should be taxed heavily and why? Which ones lightly?

• Can we derive clear and unambiguous prescriptions for policy reform?

9.1 Introduction

In this chapter we discuss the rather large literature on optimal commodity taxation. The chapter pro-

ceeds as follows. First, we build some intuition based on simple partial equilibrium reasoning. In a

partial equilibrium setting there exists a simple and intuitive inverse-elasticity result, linking the optimal

tax on a commodity to the demand elasticity of that commodity. Next we expand the model by taking

into account the general equilibrium interactions between markets. This brings us in the realm of the

Ramsey optimal taxation approach. The optimal tax rule is much less straightforward to interpret and we

build intuition by looking at some special cases. Finally, we look at the issue of marginal tax reform and

its effect on household welfare.

The maintained assumptions made throughout this chapter are as follows. First, we assume that the

policy maker does not have access to lump-sum taxes/subsidies, i.e. the analysis here is an example

of second-best welfare analysis (see Chapter 9). Second, throughout this chapter it is assumed that

producer prices are fixed. Third, in most of this chapter we deal with the case of identical households.

By focussing on this representative-agent case, we can ignore distributional issues (“equity”) and focus

on efficiency. Furthermore, we do not need to postulate an explicit social welfare function.

283
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Figure 9.1: Excess burden of taxation

9.2 Indirect taxation in partial equilibrium

In order to build up some intuition behind the complex general equilibrium models to come, this section

deals with optimal taxation in a partial equilibrium framework. We focus on a single commodity, as-

sume away all cross-price effects (i.e. the demand for the good in question is independent of the prices

of all other goods), ignore the income effect in demand, and assume that the producer price is fixed.

In Figure 9.1 the market for good g is illustrated. The quantity of good g is denoted by Xg and the

(fixed) producer price of the good is Pg. The downward sloping demand curve, D, depends only on the

price paid by the consumer. S0 is the supply curve in the absence of the tax (horizontal), and the initial

equilibrium is at point E0. Next we consider the introduction of an ad valorem tax on good g, which

we denote by tg. This tax ensures that the price to consumers is Pg

(
1 + tg

)
and the new (tax-inclusive)

supply curve is S1. The new equilibrium is at point E1.

The welfare effects of the tax can be deduced as follows. On the one hand consumer surplus falls by

the area AE1E0C, but on the other hand the government raises the tax revenue AE1BC. It follows that the

net effect of the tax, the so-called the Excess Burden (EB), is equal to the loss of consumer surplus minus

the tax revenue raised.1 The excess burden is equal to the area E1E0B in Figure 9.1. In formal terms we

can measure the excess burden associated with the tax on good g as follows:

EBg ≡
∫ X0

g

X1
g

Qg(Xg)dXg − Pg

[

X0
g − X1

g

]

, (A5.1)

where EBg is the excess burden and Qg(Xg) is the inverse demand function, expressing the consumer

price Qg as a function of the quantity demanded. The first term on the right-hand side of (A5.1) repre-

1Supply is horizontal so there is no producer surplus.
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sents the area under the demand curve between X1
g and X0

g, whilst the second term on the right-hand

side is the rectangular area X1
gX0

gE0B.

The effects of the tax on the excess burden can be determined by differentiating (A5.1):

∂EBg

∂tg
≡

∂

∂tg

[
∫ X0

g

X1
g

Qg(Xg)dXg − Pg

[

X0
g − X1

g

]
]

= −Qg(X1
g)

∂X1
g

∂tg
+ Pg

∂X1
g

∂tg

=
[
−Pg

(
1 + tg

)
+ Pg

] ∂X1
g

∂tg

= −Pgtg

∂X1
g

∂tg
, (A5.2)

where we have used Leibnitz’ Rule2 for differentiating integrals in going from the first to the second line,

and noted that Qg(X1
g) = Pg

(
1 + tg

)
in going from the second to the third line. The expression in (A5.2)

already gives us an important result, namely that the excess burden of a tax is zero for infinitesimal taxes

(i.e. if the initial tax rate is zero). The distortion due to the introduction of a small tax is of second-order

magnitude.

Armed with these insights, we can now present a first view of the policy maker’s optimal tax prob-

lem. There are G taxable commodities in total and the policy maker wishes to raise an exogenously

given tax revenue, R0, in the least distorting fashion, i.e. such that the overall excess burden of the com-

modity tax system is minimized (recall that by assumption there are no lump-sum taxes available to the

policy maker!). Formally, the revenue requirement constraint is given by:

R0 =
G

∑
g=1

tgPgX1
g, (A5.3)

where the left-hand side is the exogenous required revenue and the right-hand side is the revenue from

commodity taxes. The objective function of the policy maker is the total excess burden:

EB ≡
G

∑
g=1

EBg, (A5.4)

where the expression for EBg is given in (A5.1) above.

2Suppose that the function f (x) is defined as follows:

f (x) ≡
∫ u2(x)

u1(x)
g(t, x)dt, a ≤ x ≤ b.

Then, if (i) g(t, x) and ∂g/∂x are continuous in both t and x (in some region including u1 ≤ t ≤ u2 and a ≤ x ≤ b) and (ii) u1(x)
and u2(x) are continuous and have continuous derivatives (for a ≤ x ≤ b), then d f /dx is given by:

d f (x)

dx
=
∫ u2(x)

u1(x)

∂g(t, x)

∂x
dt + g(u2, x)

du2

dx
− g(u1, x)

du1

dx
.

Often u1 and/or u2 are constants so that one or both of the last two terms on the right-hand side of this expression vanish.
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The policy maker chooses t1, · · · , tG such that EB is minimized subject to the revenue requirement

constraint (A5.3) and taking into account that EBg and X1
g depend on tg (see (A5.2) above). The La-

grangian expression for this minimization problem is:

L ≡
G

∑
g=1

EBg + λ

[
G

∑
g=1

tgPgX1
g − R0

]

,

where λ is the Lagrange multiplier associated with the revenue requirement constraint (A5.3). The first-

order necessary conditions are the constraint (A5.3) and:

∂L

∂tg
=

∂EBg

∂tg
+ λPg

[

X1
g + tg

∂X1
g

∂tg

]

= 0, (A5.5)

for all g = 1, · · · , G. By using equation (A5.2) we can rewrite (A5.5) as follows:

−
∂EBg

∂tg
= λPg

[

X1
g + tg

∂X1
g

∂tg

]

⇔

Pgtg

∂X1
g

∂tg
= λPg

[

X1
g + tg

∂X1
g

∂tg

]

⇔

tg

∂X1
g

∂tg
= λX1

g

[

1 +
tg

X1
g

∂X1
g

∂tg

]

⇔

−
tg

X1
g

∂X1
g

∂tg
= θ, (A5.6)

where θ ≡ λ/ (1 + λ) > 0 is a constant (involving the optimized value of the Lagrange multiplier).

Since θ is constant and the same for all goods g, the rewritten first-order condition (A5.6) thus calls for

an equalization of the tax elasticity of demand for all goods.

We define the price elasticity of demand for good g in the usual way as:

εD
g ≡ −

Qg

X1
g

∂X1
g

∂Qg
, (A5.7)

where Qg ≡ Pg

(
1 + tg

)
is the demand price. Using (A5.7), the elasticity expression (A5.6) can be rewrit-

ten in terms of the tax rate:

−
Pg

(
1 + tg

)

X1
g

∂X1
g

∂Pg

(
1 + tg

)
tg

1 + tg
= θ ⇔

tg

1 + tg
=

θ

εD
g

. (A5.8)

Several things are worth noting about (A5.8). First, since θ is the same for all goods, uniform taxation is

optimal if (and only if) all goods have the same elasticity (so that εD
g is the same for all g). In any other
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case tax rates should be different for different commodities. Second, the optimal tax on a good should

be higher, the less elastic that good is, i.e.

∂tg

∂εD
g
= −

θ
(

εD
g − θ

)2
< 0. (A5.9)

By corollary, if there exists a commodity with a very low (or even zero) price elasticity of demand, then

the optimal tax rule calls for the tax on that commodity to be very high. Indeed, in the limiting case,

with a vertical demand curve for some good, all revenue should be raised by taxing only that commodity

(and leaving all other commodities untaxed).3 Effectively, the policy maker would have a lump-sum tax

at his disposal in that case.

The inverse-elasticity result is intuitive and can be illustrated informally with the aid of Figure 9.2.

Assume there are only two types of goods, namely price-elastic goods (with the demand curve DE) and

relatively price-inelastic goods (featuring a demand curve like DI). For convenience the producer price

of the two types of goods goods is the same (and equal to P in the figure). Under uniform taxation,

the tax rate is t and the tax-inclusive supply curve is SC. The excess burden is represented by the area

ABE0 for the inelastic good (EBI) and CFE0 for the elastic good (EBE). Uniform taxation is suboptimal

because the demand elasticities are unequal. Assume that the optimal taxes (as set according to (A5.8))

are denoted by, respectively, tI and tE. Excess burden is now equal to A′B′E0 for the inelastic good

and C′F′E0 for the elastic good. The increase in excess burden EBI (the area A′ABB′) is more than

compensated by the decrease in EBE (the area CC′F′
0F). (By definition total tax revenue is the same

under the two cases.)

The advantage of the partial equilibrium approach is that the results are intuitive and relatively easy

to visualize. It must be stressed, however, that the inverse-elasticity formula is based on a number of

very special (and highly restrictive) assumptions. This prompts the question concerning how the results

should be modified if we allow for income effects and non-zero cross-price effects in demand. This

question was first studied by the Cambridge mathematician-economist, Frank Ramsey.4

9.3 Indirect taxation in general equilibrium

The general equilibrium approach to optimal taxation was pioneered by Frank Ramsey (1927) and fur-

ther developed by Samuelson (1986), Corlett and Hague (1953-54), Boiteux (1971), and Diamond and

Mirrlees (1971). The model is based on the following key assumptions. First, all consumers are identical

and the argument proceeds on the basis of a representative agent. Second, the goods demand functions

and labour supply are all derived from the (indirect) utility function so both income and cross-price

3With a vertical demand curve there is no excess burden associated with the tax, i.e. the loss in consumer surplus is exactly
matched by the increase in tax revenue.

4In Chapter 8 we studied the Ramsey growth model. Frank Ramsey died after an operation in 1930, a month short of his 27th
birthday. In his brief life, he nevertheless managed to write two classic papers in economic theory, namely Ramsey (1927, 1928).
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Figure 9.2: Optimal tax in partial equilibrium

effects are included. Third, labour is the only supplied factor of production and the representative

household thus has no other source of income. Fourth, both the wage and all producer prices are fixed.

Fifth, the objective of the policy maker is to maximize welfare of the representative household.

The representative household possesses the following (direct) utility function defined over leisure

and goods:

U = U (1 − L, X1, X2, · · · , XG) , (A5.10)

where Xg is the consumption of good g (g = 1, · · · , G), L is labour supply (so 1 − L is leisure, where the

time endowment is unity), and U (·) has the usual properties, i.e. it features positive but diminishing

marginal utility for leisure and all goods and is strictly quasi-concave in its arguments. Note that, by

defining X0 ≡ −L we obtain 1 − L = 1 + X0 so that (A5.11) can be written in an alternative format as:

U = U (1 + X0, X1, X2, . . . , XG) . (A5.11)

(This format will yield some notational advantages later on.)

The household budget constraint is:

G

∑
g=1

QgXg = WL, (A5.12)

where Qg ≡ 1 + tg is the consumer price of good g (all producer prices are normalized to unity, i.e.

Pg = 1 for g = 1, . . . , G) and W is the wage rate. Note that there is no labour income tax.5 By setting

5As Atkinson and Stiglitz (1980, p. 371-371) explain, this assumption is innocuous in the present setting. Here a labour income
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Q0 = W and noting that X0 ≡ −L we can rewrite (BC) as follows:

G

∑
g=0

QgXg = 0. (A5.13)

Implicit in (A5.11) and (A5.13) is the notion that we treat X0 ≡ −L as just another good.

The indirect utility function associated with (A5.11) is defined in the usual way (see also Chapter 2):

V (Q0, . . . , QG) ≡ max
{Xg}

U (1 + X0, X1, . . . , XG) subject to
G

∑
g=0

QgXg = 0. (A5.14)

The Marshallian demands for good g and the Marshallian labour supply curve are obtained by using

Roy’s Identity (see the Intermezzo below):

Xg ≡ −
∂V/∂Qg

α
, (for g = 1, . . . , G), (A5.15)

X0 ≡ −L = −
∂V/∂Q0

α
, (A5.16)

where α is the marginal utility of income.

We now have all the ingredients needed for our second view of the policy maker’s optimal tax prob-

lem. The policy maker chooses tax rates tg on the commodities (for g = 1, . . . , G) such that utility of the

representative household, V (Q0, . . . , QG), is maximized subject to the revenue requirement restriction:

R0 =
G

∑
g=1

tgXg, (A5.17)

where (A5.17) differs slightly from (A5.3) because producer prices are normalized to unity (Pg = 1 for

all g). The Lagrangian expression associated with the maximization problem is:

L ≡ V (Q0, . . . , QG) + λ

[
G

∑
g=1

tgXg − R0

]

,

where λ is the Lagrange multiplier for the revenue requirement restriction (A5.17). The first-order nec-

essary conditions are the constraint (A5.17) and:

∂L

∂tg
=

∂V

∂Qg

∂Qg

∂tg
+ λ

[

Xg +
G

∑
j=1

tj

∂Xj

∂Qg

∂Qg

∂tg

]

=
∂V

∂Qg
+ λ

[

Xg +
G

∑
j=1

tj

∂Xj

∂Qg

]

= 0, (A5.18)

tax would be equivalent to a uniform tax on all goods. This result hinges on the absence of non-labour income and on the
impossibility of taxing leisure.



290 PUBLIC ECONOMICS: TOOLS AND TOPICS

for all g = 1, . . . , G. By using equation (A5.15) (Roy’s Identity) we can simplify (A5.18) even further:

αXg = λ

[

Xg +
G

∑
j=1

tj

∂Xj

∂Qg

]

⇔

G

∑
j=1

tj

∂Xj

∂Qg
= −

λ − α

λ
Xg. (A5.19)

Comparing (A5.19) with its partial equilibrium counterpart (A5.6), we find that G − 1 additional cross-

derivatives (of the type ∂Xj/∂Qg)) affect the optimal tax formula for good g in the general equilibrium

model.

Although it is rather compact, equation (A5.19) is still a little difficult to interpret so we need to use

some additional useful results to simplify it. The first of these results is the famous Slutsky decomposi-

tion. As we saw in Chapter 2, the Marshallian and Hicksian demands are related according the Slutsky

equation:

∂Xj

∂Qg
=

(
∂Xj

∂Qg

)

U0

− Xg
∂Xj

∂M
, (A5.20)

where Sjg ≡
(
∂Xj/∂Qg

)

U0
is the derivative of the Hicksian demand curve and ∂Xj/∂M is the income

effect (evaluated at M = 0, since there is no lump-sum income in the model). The second useful result

is the property of Slutsky symmetry:

Sjg ≡

(
∂Xj

∂Qg

)

U0

=

(

∂Xg

∂Qj

)

U0

≡ Sgj. (A5.21)

According to (A5.21), for Hicksian demands the cross-derivative of good j with respect to the price of

good g is equal to the cross-derivative of good g with respect to the price of good j. By using (A5.20)

and (A5.21) in (A5.19) we find after some steps:

G

∑
j=1

tj

[(
∂Xj

∂Qg

)

U0

− Xg
∂Xj

∂M

]

= −
λ − α

λ
Xg ⇔

G

∑
j=1

tj

(

∂Xg

∂Qj

)

U0

= −
λ − α

λ
Xg + Xg

G

∑
j=1

tj

∂Xj

∂M
⇔

G

∑
j=1

tjSgj

Xg
= −θ (for g = 1, . . . , G), (A5.22)
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where θ > 0 is defined as follows:6

θ ≡
λ − α

λ
−

G

∑
j=1

tj

∂Xj

∂M
. (A5.23)

Several things are worth noting about (A5.22) and (A5.23). First, the expression (A5.22) is the Ramsey

optimal tax formula as it was first derived by Samuelson in 1951 in an unpublished memorandum for the

U.S. Treasury (see Samuelson, 1986). He interprets the result as follows: “An optimal pattern of taxes is

one which, if it were imposed but compensated for by giving the consumer enough lump-sum income to

keep him on the same level of satisfaction, would then result in an equal percentage change in all goods

and services.” He hastens to add that as such the formula “consists substantially of ‘empty boxes’” and

thus provides little or no practical policy advice concerning taxes on actual goods (Samuelson, 1986, p.

139).

The second noteworthy feature of (A5.22) is that not the Marshallian but the compensated (Hicksian)

derivatives feature in the optimal formula: any tax has income effects but the distorting effect of a tax

originates from the pure substitution effect. Third, if we ignore all income effects (∂Xj/∂M = 0) and all

cross-price effects (Sgj = 0 for j 6= g) then (A5.22) reduces to the partial equilibrium expression (A5.6).

As Samuelson warns us, the optimal tax formula (A5.22) has a rather “deceptive simplicity” about

it (1986, p. 140). Indeed, the formula constitutes a system of G simultaneous equations in the tax rates

t1, . . . , tG which must be inverted somehow to get expressions for these tax rates. In the presence of

non-zero cross-price terms (Sgj 6= 0), this matrix inversion is far from straightforward. We therefore

look at some special cases to build further intuition behind the optimal tax formula.

Atkinson and Stiglitz (1972, 1980) distinguish three special cases of the Ramsey optimal tax formula.

In case 1, there are only two-goods (G = 2) and we reach the conclusion that the policy maker should

tax more heavily the good that is complementary with leisure (conform the classic result by Corlett and

Hague (1953-54)). Case 2 assumes that the utility function is implicitly separable between leisure and

goods. In this case a uniform tax on all goods is optimal. Finally, in case 3 preferences are assumed to

be directly additive and we obtain the result that necessities should be taxed more heavily than luxuries.

Intermezzo 9.1

Roy’s Identity and labour supply. With variable labour supply, Roy’s Identity can be proved

as follows (see also Varian (1992, pp. 097-098)). The household maximizes (A5.10) subject to

6Atkinson and Stiglitz (1980, p. 373) prove that θ is positive, i.e. it has the same sign as required revenue R0. The proof proceeds
as follows. Taking Xg to the other side in (A5.22), multiplying by tg, and summing over all g we get:

G

∑
g=1

G

∑
j=1

tgSgjtj = −θ
G

∑
g=1

tgXg = −θR0, (A)

where we have used (A5.17) to get to the final equality. The left-hand side of (A) is negative because the Slutsky matrix is negative
semi-definite) so that θR0 must be positive.
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(A5.12) and the Lagrangian is:

L ≡ U (1 − L, X1, X2, . . . , XG) + α

[

WL −
G

∑
g=1

QgXg

]

,

where α is the Lagrange multiplier (equal to the marginal utility of lump-sum income in the

optimum). The first-order conditions are:

∂U

∂Xg
= αQg, (for g = 1, . . . , G), (A)

∂U

∂ (1 − L)
= αW, (B)

WL =
G

∑
g=1

QgXg. (C)

These conditions, of course, define the Marshallian solutions for Xg and L which we write

as:

Xg = Xg (Q1, . . . , QG, W) , (for g = 1, . . . , G), (D)

L = L (Q1, . . . , QG, W) . (E)

The indirect utility function can thus be written as follows:

V (Q1, . . . , QG, W) ≡ U
(

X1 (Q1, . . . , QG, W) , . . . ,

XG (Q1, . . . , QG, W) , L (Q1, . . . , QG, W)
)

. (F)

By differentiating (F) with respect to Qj we obtain:

∂V (·)

∂Qj
=

∂U

∂X1

∂X1

∂Qj
+ . . . +

∂U

∂XG

∂XG

∂Qj
−

∂U

∂ (1 − L)

∂L

∂Qj

= αQ1
∂X1

∂Qj
+ . . . + αQG

∂XG

∂Qj
− αW

∂L

∂Qj

= α

[
G

∑
g=1

Qg
∂Xg

∂Qj
− W

∂L

∂Qj

]

, (G)

where we have used the first-order conditions (A)-(B) in going from the first to the second

line. By differentiating the budget constraint (C) with respect to Qj we obtain:

W
∂L

∂Qj
=

G

∑
g=1

Qg
∂Xg

∂Qj
+ Xj. (H)
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By combining (G) and (H) we obtain Roy’s Identity for good j:

∂V (·)

∂Qj
= −αXj ⇔ Xj = −

∂V (·) /∂Qj

α
. (I)

Similarly, for labour supply we derive (by following analogous steps but differentiating with

respect to the wage W):

∂V (·)

∂W
= α

[
G

∑
g=1

Qg
∂Xg

∂W
− W

∂L

∂W

]

, (J)

L + W
∂L

∂W
=

G

∑
g=1

Qg
∂Xg

∂W
. (K)

Finally, by combining (J) and (K) we find Roy’s Identity for labour supply:

∂V (·)

∂W
= αL ⇔ L =

∂V (·) /∂W

α
. (L)

****

9.3.1 Special case 1: Two goods

In a classic paper, Corlett and Hague (1953-54) study the optimal taxation problem in a model with two

goods. By setting G = 2 we derive from (A5.22) that the optimal taxes t1 and t2 are the solutions to the

following matrix equation:




S11 S12

S21 S22








t1

t2



 = −θ




X1

X2



 , (A5.24)

where Sij ≡
(
∂Xi/∂Qj

)

U0
is the Hicksian cross-price elasticity and θ is defined as follows:

θ ≡
λ − α

λ
−

[

t1
∂X1

∂M
+ t2

∂X2

∂M

]

. (A5.25)

The matrix S on the left-hand side of (A5.24) is the so-called Slutsky matrix which is symmetric and

negative semidefinite (Varian, 1992, pp. 123) and thus has a positive determinant, i.e. |S| ≡ S11S22 −
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(S12)
2
> 0.7 By inverting (A5.24) we obtain:




t1

t2



 = −
θ

|S|




S22 −S12

−S21 S11








X1

X2





=
θ

|S|




−S22X1 + S12X2

S21X1 − S11X2



 . (A5.26)

We define the elasticities of compensated demand as follows:

εij ≡
Qj

Xi

(

∂Xi

∂Qj

)

U0

=
QjSij

Xi
, (A5.27)

and note that these elasticities satisfy:8

ε10 + ε11 + ε12 = 0, (A5.28)

ε20 + ε21 + ε22 = 0. (A5.29)

By using (A5.27), equation (A5.26) can be rewritten in terms of the compensated elasticities according

to:

t1 =
θX1X2

Q2 |S|
[ε12 − ε22] , (A5.30)

t2 =
θX1X2

Q1 |S|
[ε21 − ε11] , (A5.31)

or (since Qg = 1 + tg):

t1

1 + t1
/

t2

1 + t2
=

ε12 − ε22

ε21 − ε11
. (A5.32)

7A square matrix S which has the property xTSx ≤ 0 for all x ( 6= 0) is called negative semidefinite (and negative definite if the
inequality is strict). A matrix is negative definite if and only if the determinants of the principal minors alternate in sign (starting

negative). In the two-good case we S11 < 0, S22 < 0 and |S| ≡ S11S22 − (S12)
2
> 0.

8The proof is as follows. The compensated demand for good g is defined as:

XC
g ≡

∂E

∂Qg

where XC
g is the Hicksian demand and E (·) is the expenditure function. We know that XC

g is homogeneous of degree zero in
Q0, Q1 and Q2 so by Euler’s Theorem we have:

0 × XC
g =

∂XC
g

∂Q0
Q0 +

∂XC
g

∂Q1
Q1 +

∂XC
g

∂Q2
Q2

Dividing both sides by Xg yields the required results.
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Finally, by noting from (A5.28) that ε12 − ε22 = − [ε10 + ε11 + ε22] and from (A5.29) that ε21 − ε11 =

− [ε20 + ε11 + ε22] we obtain the final expression for the (ratio of the) optimal tax rates:

t1

1 + t1
/

t2

1 + t2
=

−ε10 − (ε11 + ε22)

−ε20 − (ε11 + ε22)
. (A5.33)

Since the “own” compensated price elasticities are negative (εii < 0) we conclude from (A5.33) that:

t1

>

=

<

t2 ⇔ ε10

<

=

>

ε20. (A5.34)

To interpret (A5.34) we recall from basic microeconomics that if εi0 > 0 then good i is called a substitute

for labour (i.e. a complement with leisure). Armed with this interpretation, it is clear that (A5.34) says

that the good with the larger cross elasticity of compensated demand with the price of labour must in

the optimum have the smaller tax rate. Or, as Corlett and Hague put it, the policy maker should tax

more heavily that good which is more complementary with leisure (i.e. more of a substitute for labour).

The intuition behind this results is as follows. If the policy maker could tax leisure, then he would have

access to a lump-sum tax (first-best case). In the absence of leisure taxation (and with only two goods),

it is second-best optimal to tax relatively more heavily that good which is complementary with leisure

(Sandmo, 1976, p. 47).

9.3.2 Special case 2: Implicit separability between leisure and goods

In the second special case, we do not restrict the number of goods but instead we investigate under

which conditions it is optimal (according to the tax formula (A5.22)) to tax all goods equally. This topic

was studied by Angus Deaton (1979) who showed that uniform taxation is optimal when there is implicit

separability between leisure and goods in the utility function.

For implicitly separable preferences the expenditure function can be written as follows:

E (Q0, Q1, . . . , QG, U0) = E (Q0, e (Q1, . . . , QG, U0) , U0) , (A5.35)

where E (·) is the overall expenditure function, e (·) is the (sub-)expenditure function relating to the

goods (g = 1, . . . , G), and U0 is the level of utility which is held constant in the two expenditure func-

tions. By making use of the derivative property (i.e. Shephard’s Lemma) of the expenditure function we

find:

XC
g (Q0, Q1, . . . , QG, U0) ≡

∂E

∂Qg
, (A5.36)

where XC
g is the Hicksian (compensated) demand for good g.
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Before we can investigate the consequences of implicit separability, we must redo the optimal tax

problem with the expenditure function (rather than with the indirect utility function). The policy maker

wishes to maximize utility, U0, subject to the revenue requirement constraint:

R0 =
G

∑
g=1

tgXC
g (Q0, Q1, . . . , QG, U0) , (A5.37)

and the household’s budget constraint:

E (Q0, Q1, . . . , QG, U0) = 0. (A5.38)

The Lagrangian expression for this maximization problem is:

L ≡ U0 + λE (Q0, Q1, . . . , QG, U0) + µ

[

R0 −
G

∑
g=1

tgXC
g (Q0, Q1, . . . , QG, U0)

]

,

where λ and µ are the Lagrange multipliers for, respectively, the household budget constraint (A5.38)

and the revenue requirement constraint (A5.37). The first-order necessary conditions are the constraints

and:

∂L

∂U0
= 1 + λ

∂E

∂U0
− µ

G

∑
g=1

tg

∂XC
g

∂U0
= 0, (A5.39)

∂L

∂tg
= λ

∂E

∂Qg

∂Qg

∂tg
− µ

[

XC
g +

G

∑
j=1

tj

∂XC
j

∂Qg

∂Qg

∂tg

]

= 0, (A5.40)

for g = 1, . . . , G. By using (A5.36) and noting that Qg ≡ 1+ tg, the first-order conditions for the tax rates

(A5.40) can be further simplified:

λXC
g = µ

[

XC
g +

G

∑
j=1

tj

∂XC
j

∂Qg

]

λ − µ

µ
Xg =

G

∑
j=1

tjSgj, (for g = 1, . . . , G), (A5.41)

where we have used the fact that XC
g = Xg and Sjg = Sgj in going from the first to the second line. Note

that (A5.41) is formally identical to (A5.22).

For implicitly separable preferences the tax formula can be simplified even further. Indeed, by using

(A5.35) we find that the compensated elasticities for good g with respect to the wage (Q0) are the same
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for all goods:9

εg0 ≡
Q0Sg0

Xg
= ε0. (A5.42)

According to (A5.42) all goods are equally complementary with leisure. Using the reasoning explained

above (for the case G = 2) we find that all goods should be taxed at the same rate, i.e. uniform com-

modity taxation is called for.

9.3.3 Special case 3: Directly-additive preferences

The third and final special case was studied by Atkinson and Stiglitz (1972, 1980) and is based on the

assumption that preferences are directly additive (see Houthakker, 1960). This case is of interest because

it shows the relationship between the optimal tax rates and the income elasticity of demand. With direct

additivity, the direct utility function can be written as:

U = U0 (1 − L) + U1 (X1) + . . . + UG (XG) , (A5.43)

where the sub-utility functions have the usual properties of positive and diminishing marginal utility,

i.e. Ug ≡ ∂Ug/∂Xg > 0, Ugg ≡ ∂2Ug/∂X2
g < 0 (for g = 1, . . . , G), U1−L ≡ ∂U0/∂ (1 − L) > 0, and

U1−L,1−L ≡ ∂2U0/∂ (1 − L)2
< 0.

Before we can investigate the consequences for optimal taxation of direct additivity of the utility

function, we must redo the optimal tax problem using the direct approach,10 i.e. by making use of the

direct rather than the indirect utility function (see also Atkinson and Stiglitz (1980, pp. 376-379) for de-

tails). In the direct (or “primal”) approach the policy maker uses quantities as the control variables. The

instruments by which the policy maker affects quantities are the commodity tax rates, and the constraints

of the optimization problem are the revenue requirement constraint and the first-order conditions of

household optimization.

We must first derive a compact expression for the first-order conditions of household optimization.

9The expression in (A5.42) is derived as follows. From (A5.35) we derive:

XC
g =

∂E

∂e

∂e

∂Qg
, (a)

where by definition ∂e/∂Qg is independent of Q0. By differentiating XC
g with respect to the wage rate, we find:

∂XC
g

∂Q0
=

∂e

∂Qg

∂2E

∂e∂Q0
=

XC
g

∂E/∂e

∂2E

∂e∂Q0
, (b)

where we have used (a) in the second step. It follows from (b) that:

Q0

XC
g

∂XC
g

∂Q0
=

Q0∂2E/∂e∂Q0

∂E/∂e
≡ ε0, (c)

where the right-hand side does not depend on g.
10Note that Ramsey (1927) himself also used the direct approach.
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The representative household maximizes direct utility (A5.43) subject to the budget constraint:

G

∑
g=1

QgXg = WL. (A5.44)

The first-order necessary conditions are:

Ug = αQg, (for g = 1, . . . , G), (A5.45)

U1−L = αW, (A5.46)

where α is the Lagrange multiplier for the budget constraint (A5.44), equalling the marginal utility of

lump-sum income in the optimum. By substituting these first-order conditions back into the budget

constraint (A5.44) we obtain the following expression:

G

∑
g=1

QgXg − WL = 0 ⇔
G

∑
g=1

Ug

α
Xg −

U1−L

α
L = 0 ⇔

G

∑
g=1

UgXg − U1−LL = 0, (A5.47)

where we have used the fact that α > 0 in the final step. Equation (A5.47) represents the household

budget constraint expressed in quantities only (rather than in quantities and prices, as in (A5.44) above).

The optimal taxation problem now takes the following format. The policy maker chooses Xg (for

g = 1, . . . , G) and L in order to maximize (A5.43) subject to (A5.47) and the (rewritten version of the)

revenue requirement constraint:

R0 =
G

∑
g=1

tgXg =
G

∑
g=1

(
Qg − 1

)
Xg

= WL −
G

∑
g=1

Xg, (A5.48)

where we have used (A5.44) to get to the second line. The Lagrangian expression for this maximization

problem is:

L ≡ U0 (1 − L) + U1 (X1) + . . . + UG (XG) + λ

[

WL −
G

∑
g=1

Xg − R0

]

+ µ

[
G

∑
g=1

UgXg − U1−LL

]

,

where λ and µ are the Lagrange multipliers for, respectively, the revenue requirement constraint (A5.48)

and the household budget constraint (A5.47). The first-order necessary conditions are the constraints



CHAPTER 9: THE STRUCTURE OF INDIRECT TAXATION 299

and:

∂L

∂L
= −U1−L + λW − µ [U1−L − LU1−L,1−L] = 0, (A5.49)

∂L

∂Xg
= Ug − λ + µ

[
Ug + XgUgg

]
= 0, (A5.50)

where we have used the fact that ∂Ug/∂L = ∂U1−L/∂Xg = 0 and ∂Ug/∂Xj = 0 for g 6= j. We define the

terms HL and Hg (for g = 1, . . . , G):

HL ≡ −
LU1−L,1−L

U1−L
> 0, Hg ≡ −

XgUgg

Ug
> 0, (A5.51)

and rewrite the first-order conditions (A5.49)-(A5.50) in a more compact format as:

λ − α

α
= µ

(

1 + HL
)

, (A5.52)

λ

α
=
(
1 + tg

)
[1 + µ (1 − Hg)] , (A5.53)

where we have used (A5.45)-(A5.46) to obtain these expressions. In the final step we eliminate µ from

these expressions and derive the optimal tax formula:11

tg

1 + tg
=

λ − α

λ

Hg + HL

1 + HL
. (A5.54)

Equation (A5.54) is yet another expression for the optimal commodity tax rates, this time expressed

in terms of properties of the direct utility function. Atkinson and Stiglitz (1980, p. 378) discuss some

interesting special cases. First, if labour supply is inelastic (U1−L = 0 so that HL → ∞ by (A5.51)) then

it follows from (A5.54) that there should be a uniform tax rate on all goods equal to tg = (λ − α) /α.

This tax is equivalent to a tax on labour income only. Intuitively, the tax is borne in that case by the

factor which is inelastic in supply (labour). The uniform commodity tax is equivalent to a lump-sum

tax. Second, for a perfectly elastic supply of labour (U1−L is constant and HL = 0), the optimal tax

formula (A5.54) yields the partial equilibrium (inverse-elasticity) result :

tg

1 + tg
=

λ − α

λ
Hg =

λ − α

λ

1

eD
g

, (A5.55)

11By solving (A5.52) for µ and substituting the result into (A5.53) we find:

1 + tg =
λ
(
1 + HL

)

α (Hg + HL) + λ (1 − Hg)
,

and thus:

tg =
(λ − α)

(
Hg + HL

)

α (Hg + HL) + λ (1 − Hg)
.

By dividing these two expressions we obtain (A5.54).
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where εD
g is the price elasticity of demand, and εD

g = 1/Hg in this case.12 Intuitively, the general equilib-

rium approach yields the same answers as the partial equilibrium approach because there are no income

effects and the demand curves only depend on own prices.

In the case of directly additive preferences and elastic labour supply, Atkinson and Stiglitz (1980, p.

379) show that a third conclusion can be drawn, namely that the optimal tax rate depends inversely on

the income elasticity of demand, i.e. necessities should be taxed more heavily than luxuries! Technically,

this result follows from (A5.54) because Hg is inversely proportional with the income (semi-)elasticity

of demand:

Hg 1

Xg

∂Xg

∂M
= −

1

α

∂α

∂M
> 0, (A5.56)

where M is lump-sum (evaluated at M = 0).13

Intermezzo 9.2

Expenditure function and Slutsky terms. Here we present a simple proof of Shephard’s

Lemma with variable labour supply (see also Varian (1992, p. 74)). The expenditure function

is defined as:

E (Q1, Q2, . . . , QG, W, U0) ≡ min
{Xg,L}

G

∑
g=1

QgXg − WL

s.t. U0 = U (X1, X2, . . . , XG, 1 − L) .

The Lagrangian associated with this problem is:

L ≡
G

∑
g=1

QgXg − WL + λ
[

U0 − U (X1, X2, . . . , XG, 1 − L)
]

where λ is the Lagrange multiplier. The first-order conditions are:

Qg = λ
∂U

∂Xg
, (for g = 1, . . . , G), (A)

12In this case U0 (1 − L) is linear in leisure, say U0 (1 − L) = γ (1 − L) so that (A5.46) implies γ = αW. Since both γ and W are
constant, so is the marginal utility of income, α. Differentiating (A5.45) with respect to Qg we find Ugg∂Xg/∂Qg = α. Using this
result in the second expression in (A5.51) we find the desired result:

Hg ≡ −
XgUgg

Ug
= −

(
α/∂Xg/∂Qg

)
Xg

αQg
= −

[
Qg

Xg

∂Xg

∂Qg

]−1

≡
1

εD
g

.

13Equation (A5.56) is derived as follows. By differentiating the household’s first-order condition for good g (A5.45) with respect
to income M we find:

Ugg
∂Xg

∂M
= Qg

∂α

∂M
= Ug

1

α

∂α

∂M
⇔ Hg 1

Xg

∂Xg

∂M
= −

1

α

∂α

∂M
.

The marginal utility of income falls with income, i.e. ∂α/∂M < 0.
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W = λ
∂U

∂ (1 − L)
, (B)

U0 = U (X1, X2, . . . , XG, 1 − L) . (C)

These conditions define the Hicksian (or compensated) solutions for Xg and L which we

write as follows:

XC
g = XC

g (Q1, . . . , QG, W, U0) , (for g = 1, . . . , G), (D)

LC = LC (Q1, . . . , QG, W, U0) , (E)

where the superscript “C” stands for compensated.

Shephard’s Lemma (or the derivative property) now takes the following form:

XC
g =

∂E

∂Qg
, (F)

LC = −
∂E

∂W
. (G)

The proof proceeds as follows. Let Q∗
g and W∗ be the actual prices and the wage rate, respec-

tively, and let XC
g and LC be the optimal choices associated with these prices and that wage

rate. Next, define the following function:

φ (Q1, . . . , QG, W) ≡ E (Q1, Q2, . . . , QG, W, U0)−

[
G

∑
g=1

QgXC
g − WLC

]

, (H)

where XC
g and LC are the expenditure-minimizing choices. Obviously, since

E (Q1, Q2, . . . , QG, W, U0) is the optimal expenditure-minimizing solution, it follows that

φ (·) ≤ 0 and that φ
(
Q∗

1 , . . . , Q∗
G, W∗

)
= 0. It follows that φ (·) attains a maximum at the

point (Q∗
1 , . . . , Q∗

G, W∗), i.e. its derivatives are zero there:

∂φ (·)

∂Qg
=

∂E

∂Qg
− XC

g = 0, (for g = 1, . . . , G), (I)

∂φ (·)

∂W
=

∂E

∂W
+ LC = 0. (J)

Equations (I)-(J) are the same as (F)-(G). Q.E.D.

****
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9.4 Many-person Ramsey rule

Up to this point we have restricted attention to the case of identical households. The objective of this

section is to generalize the Ramsey taxation formula to a setting with many heterogeneous households

who differ in ability, tastes, and endowments. The key references in this literature are Diamond (1975),

Mirrlees (1975), and Atkinson and Stiglitz (1976).. Here we follow the exposition of Atkinson and Stiglitz

(1976, pp. 59-63).

There are H households indexed by h. Each household has an indirect utility function of the follow-

ing form:

Vh = Vh (Q0, . . . , QG) , (A5.57)

where Q0 = W and Qg ≡ 1+ tg (for g = 1, . . . , G). The policy maker has an individualistic social welfare

function (see Chapter 9) featuring the (indirect) utility levels of the households:

SW ≡ Ψ
(

V1, V2, . . . , VH
)

, (A5.58)

where Ψh ≡ ∂Ψ/∂Vh
> 0 for all h = 1, 2, . . . , H. The social planner chooses the commodity taxes,

t1, t2, . . . , tG in order to maximize social welfare subject to the following revenue requirement constraint:

R0 =
G

∑
g=1

tg

H

∑
h=1

Xh
g , (A5.59)

where Xh
g is the demand for good g by household h. The Lagrangian expression associated with the

social optimization program is:

L ≡ Ψ
(

V1, V2, . . . , VH
)

+ λ

[
G

∑
g=1

tg

H

∑
h=1

Xh
g − R0

]

,

where λ is the Lagrange multiplier for the revenue requirement constraint (A5.59). The first-order nec-

essary conditions are the constraint and:

∂L

∂tg
=

H

∑
h=1

∂Ψ

∂Vh

∂Vh

∂Qg
+ λ

[
H

∑
h=1

Xh
g +

G

∑
j=1

tj

H

∑
h=1

∂Xh
j

∂Qg

∂Qg

∂tg

]

= 0. (A5.60)

To simplify these expressions we note Roy’s identity in the multi-person setting:

∂Vh

∂Qg
= −αhXh

g , (A5.61)

where αh is the marginal utility of income for household h. Furthermore, the Slutsky equation is given
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by:

∂Xh
j

∂Qg
= Sh

jg − Xg

∂Xh
j

∂Mh
, (A5.62)

where Sh
jg ≡

(

∂Xh
j /∂Qg

)

Uh
0

is the derivative of the Hicksian demand curve, ∂Xh
j /∂Mh is the income

effect (evaluated at Mh = 0, since there is no lump-sum income in the model), and Sh
jg = Sh

gj (Slutsky

symmetry). By using (A5.61) and (A5.62) in (A5.60) we find after some steps:

H

∑
h=1

ΨhαhXh
g = λ

[

HX̄g +
G

∑
j=1

tj

H

∑
h=1

∂Xh
j

∂tg

]

⇔

G

∑
j=1

tj

H

∑
h=1

Sh
gj =

H

∑
h=1

Ψhαh

λ
Xh

g +
G

∑
j=1

tj

H

∑
h=1

Xh
g

∂Xh
j

∂Mh
− HX̄g, (A5.63)

where X̄g ≡ ∑
H
h=1 Xh

g/H is the average demand for good g and Ψhαh is the gross social marginal utility

of income (or consumption) by household h. Next we define the net social marginal utility of income for

household h:

βh ≡ Ψhαh + λ
G

∑
j=1

tj

∂Xh
j

∂Mh
. (A5.64)

As Diamond (1975, p. 338) points out, βh represents the gain to society that results if household h

receives additional income. It contains two terms. The first term (Ψhαh) measures by how much social

welfare increases if household h attains a higher utility level due to the additional income. The second

part (λ ∑
G
j=1 tj∂Xh

j /∂Mh) is the social evaluation of the additional tax revenue resulting from the fact that

household h’s income has gone up. By using (A5.64) it is possible to rewrite (A5.63) in a more compact

format:

G

∑
j=1

tj

H

∑
h=1

Sh
gj =

H

∑
h=1

βh

λ
Xh

g − HX̄g ⇔

1

HX̄g

H

∑
h=1

G

∑
j=1

tjS
h
gj = −

[

1 −
H

∑
h=1

βh

λ

Xh
g

HX̄g

]

, (for g = 1, 2, . . . , G), (A5.65)

where we have changed the order of summation in going from the first to the second line. The left-

hand side of (A5.65) is the proportional reduction in the consumption of good g along the compensated

demand curves. The right-hand side is not necessarily the same for all commodities.14 Indeed, it is

only the same for all commodities if (i) βh is the same for all households (so that the right-hand side

simplifies to − (λ − β) /λ), or (ii) if Xh
g/
(

HX̄g

)
is the same for all commodities (there are no goods

that are consumed disproportionately by the rich or the poor). In any other case, the right-hand side of

14Recall that for the representative-agent case, the right-hand side is the same for all commodities–see equation (A5.22) above.
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(A5.65) will be different for each commodity. The term in square brackets is smaller, the higher is βh/λ

and/or Xh
g/
(

HX̄g

)
.

The optimal tax formula (A5.65) is often written in the following form:

1

HX̄g

H

∑
h=1

G

∑
j=1

tjS
h
gj = −

[

1 −
β̄

λ
−

β̄

λ
cov

(

βh/λ, Xh
g

)]

, (A5.66)

where β̄ ≡ ∑
H
h=1 βh/H and cov

(

βh/λ, Xh
g

)

is the normalized covariance between βh/λ and Xh
g :15

cov
(

βh/λ, Xh
g

)

≡
1

H

H

∑
h=1

(

βh/λ
)

Xh
g

(
β̄/λ

)
X̄g

− 1. (A5.67)

The first term on the right-hand side of (A5.67) is called the distributional characteristic of good g.16

9.5 Marginal tax reform

• optimal taxation literature deals with tax design: what would the system look like if we could

design it from the bottom up

• perhaps more relevant issue is that of tax reform: can we identify Pareto-improving changes in the

tax system?

• this is the inherently difficult subject of second-best economics

• pessimistic reaction:

– starting from a sub-optimal situation you cannot formulate simple/general rules about tax

reform [“you cannot say anything”]

– for example, a switch from distortionary to lump-sum taxation is not guaranteed to raise

welfare

• constructive/realistic reaction:

– starting from a sub-optimal situation there are many directions in which tax changes are

welfare improving

15In general the normalized covariance between xh and yh is defined as follows:

cov (xh, yh) ≡
1

H

H

∑
h=1

xh − x̄

x̄

yh − ȳ

ȳ
=

1

H

H

∑
h=1

xhyh

x̄ȳ
− 1,

where x̄ ≡ ∑
H
h=1 xh/H and ȳ ≡ ∑

H
h=1 yh/H are the respective means.

16This concept was proposed by Feldstein (1972a, 1972b) in the context of optimal public sector pricing with heterogeneous
households.
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– the correct direction of tax reform depends on the structure of preferences and the pre-existing

situation

– welfare improving moves can be identified theoretically [see Dixit (1975) and Dixit and Munk

(1977) for some examples]...

– ....and empirically, e.g. by using calibrated computable general equilibrium (CGE) models.
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Chapter 10

The structure of income taxation

The purpose of this chapter is to discuss the following topics:

• The classical economists on income taxation.

• Optimal linear income taxation.

• Optimal nonlinear income taxation.

• Income taxation and/or commodity taxation?

10.1 Introduction

In this chapter we present a brief overview of the main theories of income taxation. The overview is

far from complete, and the interested reader is referred to Atkinson and Stiglitz (1980, lectures 13-14),

Stiglitz (1987), and Tuomola (1990) for further details. There are three key questions that are dealt with

in the literature on income taxation, namely (a) should there be an income tax?; (b) if so, should the

income tax be graduated with income?; and (c) if so, should it be progressive, regressive, or something

else?

The answers to question (a) have been mixed. Most modern authors answer it in the affirmative

on the grounds that in the absence of income taxation, some people may not pay any tax at all (which

seems unjust). On the other hand, the notion of income taxation was by no means uncontroversial

throughout history. In the United Kingdom it was felt that the income tax is “hostile to every sense of

freedom, revolting to the feelings of Englishmen” (this led to the 1816 abolishment of the tax in that

country). Furthermore, as late as 1894 the United States Supreme Court ruled the income tax to be

“unconstitutional.”

In a similar fashion, questions (b) and (c) have also received mixed answers. On the one hand, a

widely accepted mid-20th century sentiment was that the tax should be progressive because it serves

307
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to redistribute income (the equity aspect). On the other hand, some classical economists felt that “grad-

uation is not an evil to be paltered with. Adopt it and you will effectively paralyse industry...” (J.R.

McCulloch). Also, a widely accepted late-20th century sentiment is that high marginal tax rates are bad

for “economic incentives” (the efficiency aspect).

What is clear from these views is that there is a potential conflict between equity and efficiency.

On the one hand the policy maker may want to have a graduated tax system in order to redistribute

incomes. On the other hand he may want to minimize the distorting aspects of income taxation. The

objective of this chapter is to study the appropriate system of redistributive income taxation and to show

how is it affected by (i) differences in distributive objectives, (ii) endogeneity of labour supply, and (iii)

inequality of the pre-tax income distribution.

10.2 The sacrifice theory of income taxation

The Classical theory of income taxation is based on the equal sacrifice approach. Adam Smith for example

argued that “subjects should contribute in proportion to their respective abilities” whilst in John Stuart

Mill’s view “whatever sacrifices the government requires...should be made to bear as nearly as possible

with the same pressure upon all.” A more recent version of the equal sacrifice theory says that the income

tax system should be designed such that it maximizes a Benthamite social welfare function (consisting

of the sum of individual utilities; see Chapter 9).

Consider the following simple model. Individuals differ in their earning ability, n, and before-tax

earning of an individual of type n is denoted by Z (n). The tax paid by this individual is denoted by

T (n) and the (indirect) utility of the n-type individual depends on after-tax earnings:

Un = Un (Y (n)) , (A5.1)

where Un (·) has the usual properties (∂Un/∂Y (n) > 0 and ∂2Un/∂Y (n)2
< 0) and Y (n) is after-tax

income:

Y (n) ≡ Z (n)− T (n) . (A5.2)

Implicit in this formulation is the notion that the household consumes his entire after-tax income, i.e.

the model is static and there is no saving.

The cumulative distribution of people of type n is denoted by F (n) and the density function is f (n) ≡

F′ (n). The policy maker’s objective function is the “sum” of individual utilities which (in this continuous-

type model) amounts to:

SW ≡
∫ ∞

0
Un (Z (n)− T (n)) f (n) dn. (A5.3)
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The instrument of the policy maker is the tax schedule, T (n) (which may be positive or negative), and

the revenue requirement constraint is:

∫ ∞

0
T (n) f (n) dn = R0, (A5.4)

where R0 is exogenous. The policy maker chooses a tax schedule T (n) such that (A5.3) is maximized

subject to (A5.4). The Lagrangian for this maximization problem is:

L ≡
∫ ∞

0
Un (Z (n)− T (n)) f (n) dn + λ

[∫ ∞

0
T (n) f (n) dn − R0

]

,

where λ is the Lagrange multiplier for the constraint (A5.4). The first-order necessary conditions are the

constraint and:

∂L

∂T (n)
= −

∂Un

∂Y (n)
f (n) + λ f (n) = 0, (A5.5)

or:

λ =
∂Un

∂Y (n)
. (A5.6)

Since the same λ applies to all individuals, the optimal income tax system calls for an equalization of the

marginal utility of after-tax earnings for all individuals. In the special case of identical utility functions

(Un (·) = U (·)) we obtain the completely egalitarian solution, i.e. after-tax incomes should be the same

for all individuals!

As an example, consider the case in which the utility function is iso-elastic:

Un =







Y(n)1−1/σ−1
1−1/σ if σ ≥ 0, σ 6= 1

ln Y (n) if σ = 1

, (A5.7)

where σ is the substitution elasticity (σ > 0). The first-order condition (A5.7) calls for:

Y (n)−1/σ = λ, (A5.8)

so that it follows from (A5.2) that:

Z (n)− T (n) = λ−σ. (A5.9)

By substituting (A5.9) into the revenue requirement constraint (A5.4) we find the equilibrium value for
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Figure 10.1: Utilitarian optimal income tax (σ = 1 case)

λ:

R0 =
∫ ∞

0
T (n) f (n) dn

=
∫ ∞

0

[
Z (n)− λ−σ

]
f (n) dn

= Z̄ − λ−σ, (A5.10)

where Z̄ ≡
∫ ∞

0 Z (n) f (n) dn is average pre-tax earnings in the economy. Furthermore, by substituting

(A5.10) in (A5.9) we find the tax schedule:1

T (n) = Z (n)− λ−σ

= [Z (n)− Z̄] + R0. (A5.11)

According to (A5.11), individuals with higher than average ability (Z (n) > Z̄) pay more taxes and the

tax for everybody is higher the larger is the required revenue, R0. In Figure 10.1 we illustrate the pre-tax

and after-tax situation for a poor and a rich individual (P and R) for the unit-elastic case (σ = 1). Under

the optimal tax system, the after-tax point is at E0, where Y (n) = 1/λ for both types of agents. Figure

10.2 illustrates what happens to the optimal point if either required revenue increases (R0 up) or average

pre-tax earnings fall (Z̄ down). In both cases the egalitarian after-tax income level falls.

The sacrifice theory of income taxation has been criticized for the following reasons. First, it ig-

nores the disincentive effects of taxation, i.e. that Z (n) itself may be affected by T (n), for example by

1This tax function is quite simple in form because household utility functions are assumed to be identical. If households differ,
say in their parameter σ, then we obtain a term like

∫ ∞

0 λ−σn f (n) dn in (A5.10) and we are forced to make an assumption about
the shape of the distribution of inherent abilities.
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Figure 10.2: An increase in R0 or decrease in Z̄

labour supply reactions (see below). Second, it uses a rather restrictive utilitarian framework, i.e. the

social welfare function may not be Benthamite (or may even be non-individualistic). Third, it ignores

restrictions on the types of taxes that may be levied. The shape of tax system may have very important

consequences if labour supply effects are allowed for.

10.3 The optimal linear income tax

The modern theory of income taxation was pioneered by James Mirrlees (1971). The key element of

the modern approach is the central role it reserves for the (adverse) incentive effects of taxation under

information asymmetry. An attractive aspect of the modern approach is that the conflict between equity

and efficiency can be studied jointly in a single model. Because the modern theory of optimal income

taxation is quite complex, we adopt a gradual method of attack (going from the easy to the more difficult

material). The remainder of this section presents the (relatively straightforward) optimal linear income

tax which was first studied by Sheshinski (1972). Attention is focused on the special case of a Benthamite

social welfare function, and some intuitive remarks are made for the more general case.

In the next section we shift gear and study the optimal non-linear income tax of Mirrlees (1971).

Again we approach the material in a number of steps. First, we study the special case with a Rawlsian

social welfare function. Next, we deal with a general social welfare function but quasi-linear preferences.

Finally, we deal with the most general case in an intuitive fashion and by means of some simulation

results.
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10.3.1 A simple model

The optimal linear income tax was first studied by Sheshinski (1972). In this subsection we use the

formulation of Dixit and Sandmo (1977) which has the attractive feature that it stresses the similarity

between the income taxation literature and the commodity taxation literature of the previous chapter.

The model features the following basic assumptions. First, individuals differ according to innate ability

but have identical utility functions. Second, the wage rate is exogenous and producer prices are fixed.

Third, the social welfare function is Benthamite (utilitarian).

There are H households indexed by h and the direct utility function of household h is:

Uh ≡ U
(

Ch, 1 − Lh
)

, (A5.12)

where Uh, Ch, and 1− Lh are, respectively, utility, consumption, and leisure of household h (Lh is labour

supply). The utility function, U (·), takes the same form for all households. It has the usual properties

of positive but diminishing marginal utility and indifference curves bulge towards the origin [REFER

TO CHAPTER 2] (UC > 0, U1−L > 0, UCC < 0, U1−L,1−L < 0, and UCCU1−L,1−L − UC,1−L > 0). The

consumption good is the numeraire commodity and we set its price equal to unity (P = 1). Just as in the

previous section, households are assumed to differ in their labour productivity (innate/exogenous skill

differences). The effective labour supply in efficiency units is denoted by nhLh, and the representative

firm maximizes profit,

Π ≡
H

∑
h=1

nhLh −
H

∑
h=1

WhLh, (A5.13)

by choice of Lh. It follows that the wage rate of household h is equal to that household’s marginal

product:

Wh = nh. (A5.14)

There is no non-labour income so the household budget constraint is:

Ch = WhLh − Th, (A5.15)

where Th is the tax paid by household h.

The policy maker acts on the basis of an individualistic Benthamite (utilitarian) social welfare func-

tion:

SW ≡
H

∑
h=1

Uh, (A5.16)
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where SW is an index of social welfare. The policy maker’s instrument consists of a tax schedule which

relates the tax to the agent’s economic performance, i.e. to the household’s labour income (WhLh). In this

section we focus on the simple case, where the tax schedule is linear in the tax base:

Th = −S + tLWhLh, (A5.17)

where S is the lump-sum subsidy (or tax, if S < 0) and tL is the (constant) marginal tax rate (obviously

0 < tL < 1). Note that since tL > 0, the tax schedule is progressive (regressive) if S > 0 (S < 0).

The informational asymmetry mentioned above originates from the implicit assumption that the pol-

icy maker cannot directly observe (or infer) the household’s innate ability nh (e.g. by IQ tests, higher

degrees, diploma’s etcetera) so that a tax on innate ability is not feasible. As a result, the policy maker

faces a second-best social optimization problem! He can only observe WhLh but not Lh and Wh sepa-

rately.2 (Of course, if an ability tax would be feasible, then the policy maker would face a first-best

social optimization problem. See the Intermezzo below.)

Household h chooses Ch and Lh in order to maximize utility (A5.12) subject to the budget constraint

(A5.15) and the linear tax schedule (A5.17). The Lagrangian for this maximization problem is:

Lh ≡ U
(

Ch, 1 − Lh
)

+ αh
[

S + (1 − tL)WhLh − Ch
]

,

where αh is the Lagrange multiplier for the budget constraint (equalling the marginal utility of lump-

sum income to household h in the optimum). The first-order conditions are:

∂Lh

∂Ch
=

∂U

∂Ch
− αh = 0, (A5.18)

∂Lh

∂Lh
= −

∂U

∂
(
1 − Lh

) + αh (1 − tL)Wh = 0. (A5.19)

An implication of (A5.18)-(A5.19) is that the household equates the marginal rate of substitution between

consumption and leisure to the after-tax wage rate (U1−L/UC = Wh (1 − tL)), i.e. the household’s labour

supply decision is distorted if the marginal tax rate is non-zero.

Equations (A5.18)-(A5.19) and the budget constraint implicitly define Marshallian consumption de-

mand and labour supply which we write as follows:

Ch = C
(

S, (1 − tL)Wh
)

, (A5.20)

Lh = L
(

S, (1 − tL)Wh
)

. (A5.21)

By substituting these expressions into the direct utility function (A5.12) we obtain the indirect utility

2In contrast, the firm is able to observe innate ability of its workers–see equation (A5.14) above.
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function:

Vh = V
(

S, (1 − tL)Wh
)

. (A5.22)

Recall that the indirect utility function has the following properties:3

∂Vh

∂S
=

∂V (·)

∂S
= αh, (A5.23)

∂Vh

∂ (1 − tL)
=

∂V (·)

∂ (1 − tL)
= αhWhLh. (A5.24)

10.3.2 The second-best social optimum

In the second-best social optimum, the policy maker chooses S and tL in order to maximize social wel-

fare,

SW ≡
H

∑
h=1

V
(

S, (1 − tL)Wh
)

, (A5.25)

subject to the revenue requirement constraint:

H

∑
h=1

[

tLWhLh (·)− S
]

= R0, (A5.26)

where R0 is the exogenous (net) revenue requirement and Lh (·) is the Marshallian labour supply curve

(A5.21). The Lagrangian expression for this maximization problem is:

H ≡
H

∑
h=1

V
(

S, (1 − tL)Wh
)

+ λ

[
H

∑
h=1

[

tLWhLh
(

S, (1 − tL)Wh
)

− S
]

− R0

]

,

where λ is the Lagrange multiplier for the revenue requirement constraint (A5.26). The two interesting

first-order necessary conditions are:

∂H

∂S
=

H

∑
h=1

∂V

∂S
+ λtL

H

∑
h=1

Wh ∂Lh

∂S
− λH = 0, (A5.27)

∂H

∂tL
= −

H

∑
h=1

∂V

∂ (1 − tL)
+ λ

[
H

∑
h=1

WhLh − tL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)

]

= 0. (A5.28)

3Roy’s Lemma for labour supply says:

Lh =
∂V/∂

[
(1 − tL)Wh

]

∂V/∂S
=

1

Wh

∂V/∂ (1 − tL)

αh
,

from which the result in (A5.24) follows.
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By using (A5.23)-(A5.24) these expressions can be further simplified to:

0 =
H

∑
h=1

αh + λtL

H

∑
h=1

Wh ∂Lh

∂S
− λH, (A5.29)

0 =
H

∑
h=1

αhWhLh − λ
H

∑
h=1

WhLh + λtL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)
. (A5.30)

Equation (A5.29) is the condition determining the optimal lump-sum subsidy (S, the revenue raising

instrument) whilst (A5.30) is the condition determining the optimal marginal tax rate (tL, the redistribu-

tion instrument). Together with (A5.26) these conditions determine (S, tL, λ).

Before developing the various expressions for the optimal tax formulae suggested by Dixit and

Sandmo (1977) we test our intuition by asking what would be the optimum choice of (S, tL) if all house-

holds were identical. Intuitively one would expect that, since there is no need for redistribution, there

should be no distorting labour income tax and all revenue should raised by means of the lump-sum sub-

sidy. Does the theory also give that answer? Technically, with identical households we have Wh = W,

Lh = L, and αh = α (for all h = 1, · · · , H) so that (A5.29), (A5.30), and (A5.26) simplify to:

0 = H

[

(α − λ) + λtLW
∂L

∂S

]

, (A5.31)

0 = HW

[

(α − λ) L + λtL
∂L

∂ (1 − tL)

]

, (A5.32)

R0 = H [tLWL − S] . (A5.33)

The Slutsky equation for labour supply is:

∂L

∂ (1 − tL)
= SLL + WL

∂L

∂S
, (A5.34)

where SLL ≡ (∂L/∂ (1 − tL))U0
> 0 is the pure substitution effect. By using this expression in (A5.32)

we obtain:

[

(α − λ) + λtLW
∂L

∂S

]

L + λtLSLL = 0, (A5.35)

and it follows from (A5.31) and (A5.35) that the unique solution is α = λ and tL = 0. To summarize, the

socially optimal solution is:

α = λ, tL = 0, S = −
R0

H
. (A5.36)

These solutions accord with intuition. The policy maker raises revenue in a non-distorting fashion by

ensuring that the marginal dollar taken from the household costs privately as much as it yields socially

(α = λ). The policy maker does not distort the labour supply decision because there is no need for
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redistribution (tL = 0), and all households are identical so they all pay the same lump-sum tax. The

intuition is this borne out by the technical expressions. Note that in this case we get exactly the same

solution as in the sacrifice theory discussed above.

Intermezzo 10.1

The first-best optimal linear income tax. Assume for the sake of argument that the policy

maker can observe innate ability, nh. What kind of a tax would the policy maker choose?

Clearly, in such a setting the instruments can be individualized, i.e. the policy maker’s in-

struments are Sh and th
L (for h = 1, · · · , H). In the first-best social optimum, the policy

maker’s objective function is:

SW ≡
H

∑
h=1

V
(

Sh,
(

1 − th
L

)

Wh
)

, (A)

and the revenue requirement is:

H

∑
h=1

[

th
LWhLh − Sh

]

= R0, (B)

where R0 is the exogenous (net) revenue requirement. The policy maker chooses Sh and

th
L in order to maximize (A) subject to (B). The Lagrangian expression for the maximization

problem is:

H ≡
H

∑
h=1

V
(

Sh,
(

1 − th
L

)

Wh
)

+ λ

[
H

∑
h=1

[

th
LWhLh

(

Sh,
(

1 − th
L

)

Wh
)

− Sh
]

− R0

]

,

where λ is the Lagrange multiplier for the revenue requirement constraint (B). The interest-

ing first-order necessary conditions are

∂H

∂Sh
=

∂V

∂Sh
+ λth

LWh ∂Lh

∂Sh
− λ = 0, (C)

∂H

∂th
L

= −
∂V

∂
(
1 − th

L

) + λ

[

WhLh − th
LWh ∂Lh

∂
(
1 − th

L

)

]

= 0, (D)

for h = 1, . . . , H.

Equations (A5.23) and (A5.24) are modified to:

∂Vh

∂Sh
=

∂V (·)

∂Sh
= αh, (E)
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∂Vh

∂
(
1 − th

L

) =
∂V (·)

∂
(
1 − th

L

) = αhWhLh, (F)

where αh is the marginal utility of income to household h. Using (E)-(F), the first-order con-

ditions (C)-(D) can be simplified to:

0 = αh + λth
LWh ∂Lh

∂S
− λ, (G)

0 = αhWhLh − λWhLh + λth
LWh ∂Lh

∂
(
1 − th

L

) . (H)

Equation (G) is the condition determining the optimal lump-sum subsidies (Sh), i.e. the

revenue raising instruments. Equation (H) is the condition determining the optimal marginal

tax rates (th
L), i.e. the redistribution instruments. Together with (B) these conditions jointly

determine
(

Sh, th
L, λ
)

(note that there are 2H + 1 independent equations). The solution is:

αh = λ, (for h = 1, . . . , H), (I)

th
L = 0, (for h = 1, . . . , H), (J)

∂V
(

Sh, nh
)

∂Sh
= αh. (K)

Intuitively, the policy maker raises revenue in a non-distorting fashion (th
L = 0) by choosing

Sh appropriately such that the marginal utility of income is equated for all agents, taking into

account that Wh = nh. It follows that the first-best optimal income tax is a lump-sum ability

tax.

****

10.3.3 Formulae for the second-best optimal tax

Dixit and Sandmo (1977, p. 419) show that (for the general case with heterogeneous households) the two

first-order conditions (A5.29) and (A5.30) can be rewritten in various alternative formats which stress

the similarity with the optimal commodity tax formulae studied in the previous chapter. We start with

(A5.30), the condition determining the optimal marginal income tax. It can be rewritten as follows:

tL

H

∑
h=1

∂WhLh

∂ (1 − tL)
= −

1

λ

H

∑
h=1

αhWhLh +
H

∑
h=1

WhLh ⇔

tL
∂ ∑

H
h=1 WhLh

∂ (1 − tL)
= −

1

λ

H

∑
h=1

αhWhLh +
H

∑
h=1

WhLh ⇔
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tL

1 − tL

∂ ∑
H
h=1 WhLh

∂ (1 − tL)

1 − tL

∑
H
h=1 WhLh

=
1

λ

[

λ −
∑

H
h=1 αhWhLh

∑
H
h=1 WhLh

]

⇔

tL

1 − tL
=

λ − ᾱ

λ

1

σL
, (A5.37)

where σL and ᾱ are defined as:

σL ≡
∂ ∑

H
h=1 nhLh

∂ (1 − tL)

1 − tL

∑
H
h=1 nhLh

, (A5.38)

ᾱ ≡
∑

H
h=1 αhnhLh

∑
H
h=1 nhLh

, (A5.39)

and where we have used the fact that Wh = nh in the final expressions. The interpretation of (A5.37) is

as follows. The parameter σL is the elasticity of aggregate labour supply in efficiency units with respect

to the after-tax wage. Under the assumption that individual labour supply is increasing in the wage

(∂Lh/∂ (1 − tL) > 0), this elasticity is positive (σL > 0). Assuming that tL is non-negative, it follows

from (A5.37) that λ is greater than ᾱ.4 In this scenario, since σL > 0 and λ > ᾱ, the optimal marginal

tax is higher, the lower is σL. Equation (A5.37) is thus like an inverse-elasticity formula one often finds

for optimal commodity taxation (see Chapter 10 for examples). Redistributional concerns enter via the

term, ᾱ, involving the weighted average of marginal utilities of income, with tax bases acting as weights.

Ceteris paribus, the optimal tax is higher, the lower is ᾱ, i.e. the stronger the tendency for high-income

individuals is to have a low marginal utility of income (αh).5

Dixit and Sandmo (1977, p. 420) also develop an alternative formula which is expressed in terms of

the tax elasticity of consumption demand. The aggregate production constraint is:

C ≡
H

∑
h=1

Ch =
H

∑
h=1

nhLh, (A5.40)

where C is aggregate consumption. By using (A5.40) and (A5.38) in (A5.37) we find the alternative

formula for the optimal labour income tax:

tL

1 − tL
=

λ − ᾱ

λ

1
∂C

∂(1−tL)
1−tL

C

. (A5.41)

A third formula developed by Dixit and Sandmo (1977, pp. 421-422) makes use of a covariance term,

not unlike the one we studied in the many-person Ramsey rule in Chapter 10. We return to (A5.29)-

4Note that it follows from (A5.29) that λ is certainly positive if tL is non-negative and leisure is a normal good (∂Lh/∂S < 0).
5In the special case with identical households (αh = α for all h), equation (A5.37) simplifies to:

tL

1 − tL
=

λ − α

λ

1

σL
.

This expression holds regardless of (A5.31) (which determines S). If S is set optimally, then λ = α and it is optimal to set tL = 0:
the distorting tax is not used for revenue raising. If, in contrast, S is not set optimally, then tL is also used to raise revenue.
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(A5.30) and define the following auxiliary variables:

βh ≡ αh + λtLWh ∂Lh

∂S
, (A5.42)

β̄ ≡
H

∑
h=1

βh

H
, (A5.43)

where βh is called the social marginal utility of income to household h. The intuition behind this term is

as follows. A marginal increase in the lump-sum subsidy increases private utility by αh. It also reduces

labour supply (provided leisure is a normal good), erodes the tax base, and reduces tax revenue by

tLWh ∂Lh

∂S . This is valued at the marginal utility of income to the policy maker (i.e. λ). Note that in

(A5.43), β̄ is the average value of βh over the population.

Using these definitions, the first-order conditions (A5.29)-(A5.30) can be rewritten as follows:

β̄ = λ, (A5.44)

tL = −
1

λ

cov
(

βh, WhLh
)

1
H ∑

H
h=1 WhSh

LL

, (A5.45)

where cov
(

βh, WhLh
)

is the covariance between βh and WhLh, Sh
LL ≡

(

∂Lh/∂ (1 − tL)
)

U0

> 0 is the

pure substitution effect in the labour supply of household h. Note that equation (A5.44) follows directly

from (A5.42)-(A5.43) and (A5.29). The derivation of (A5.45), however, is non-trivial–see the Intermezzo.

The interpretation of (A5.44) and (A5.45) is as follows. According to (A5.44), the lump-sum element

of the tax (i.e. the subsidy S) should be adjusted in such a way that the average social marginal utility

of the subsidy to the households (β̄) equals the cost to the policy maker of making that transfer (λ).

In equation (A5.45), the marginal tax rate contains an equity element (the numerator) and an efficiency

element (the denominator). To interpret this expression, note that since Sh
LL > 0 we know for sure that

the denominator is positive. The sign of the numerator is somewhat more problematic to establish

although the presumption is that it is negative. There are two effects in operation. First, it is reasonable

to assume that cov
(

αh, WhLh
)

< 0, i.e. that private marginal utility of income falls as income rises. This

effect tends to make the covariance between βh and WhLh negative. Second, if leisure is a normal good,

∂Lh/∂S < 0 so we expect cov
(

Wh∂Lh/∂S, WhLh
)

< 0 also. Hence, as Atkinson and Stiglitz (1980, p.

408) point out, only if leisure becomes inferior at high wage rates is it is possible for this term to cause

ambiguity for the sign of cov
(

βh, WhLh
)

.

10.3.4 Closing remarks

We conclude this discussion on the optimal linear income tax with a number of closing remarks. First,

referring to the optimal tax formula (A5.45) it is easy to establish the link between the first-best and

second best policies. In the first-best policy, the policy maker sets tL = 0 and αh = λ for all h (by using
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a lump-sum ability tax) so that it follows from (A5.42) that βh = λ, i.e. cov
(

βh, WhLh
)

= 0 in that case.

Equation (A5.45) confirms that there is no need for distorting taxation in that case.

The second remark deals with the implications of assuming a more general social welfare function

than the Benthamite formulation given in (A5.16) above. Suppose that the social planner has a general

social welfare function of the form:

SW ≡ Ψ
(

U1, U2, . . . , UH
)

, (A5.46)

where Ψh ≡ ∂Ψ/∂Uh is the marginal weight of household h’s utility in social welfare. Using the same

steps as before we obtain the following first-order conditions:

0 =
H

∑
h=1

αhΨh + λtL

H

∑
h=1

Wh ∂Lh

∂S
− λH, (A5.47)

0 =
H

∑
h=1

αhΨhWhLh − λ
H

∑
h=1

WhLh + λtL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)
. (A5.48)

Hence, compared to (A5.29)-(A5.30), the only change that occurs is that private marginal utility of in-

come (αh) is now weighted by the policy maker’s marginal weight for household h (Ψh). By suitably

modifying the definition of βh in (A5.42) we still obtain the formulae (A5.44)-(A5.45).

Intermezzo 10.2

Derivation of the covariance formula (A5.45). Derivations for the covariance formula are

also given in Stiglitz (1987) for the continuous case and in Dixit and Sandmo (1977) for the

discrete case. Step 1: We recall the Slutsky equation for labour supply:

∂Lh

∂ (1 − tL)
= WhLh ∂Lh

∂S
+ Sh

LL, (A)

where Sh
LL ≡

(

∂Lh/∂ (1 − tL)
)

U0

> 0 is the pure substitution effect. Using (A) we can write

(A5.30) in terms of βh:

0 =
H

∑
h=1

[

αhWhLh − λWhLh + λtLWh

(

WhLh ∂Lh

∂S
+ Sh

LL

)]

0 =
H

∑
h=1

WhLh

[

αh − λ + λtLWh ∂Lh

∂S
+ λtL

Sh
LL

Lh

]

0 =
H

∑
h=1

WhLh

[

βh − β̄ + λtL
Sh

LL

Lh

]

(B)

where we have used the fact that λ = β̄ (see (A5.44)) in the final step.
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Step 2: We solve (B) for tL and obtain:

−λtL

H

∑
h=1

WhSh
LL =

H

∑
h=1

WhLh
(

βh − β̄
)

⇔

tL = −
1

λ

1
H ∑

H
h=1 WhLh

(

βh − β̄
)

1
H ∑

H
h=1 WhSh

LL

. (C)

The covariance between variables xh and yh is defined as follows:

cov (xh, yh) ≡
1

H

H

∑
h=1

(xh − x̄) (yh − ȳ) =
1

H

H

∑
h=1

xhyh − x̄ȳ, (D)

where x̄ ≡ ∑
H
h=1 xh/H and ȳ ≡ ∑

H
h=1 yh/H are the respective means. By using this definition

in (C) we obtain:

tL = −
1

λ

1
H ∑

H
h=1

(

WhLh − WL + WL
) (

βh − β̄
)

1
H ∑

H
h=1 WhSh

LL

= −
1

λ

cov
(

WhLh, βh
)

1
H ∑

H
h=1 WhSh

LL

, (E)

where we have used the fact that:

1

H

H

∑
h=1

WL
(

βh − β̄
)

=
WL

H

H

∑
h=1

(

βh − β̄
)

= 0. (F)

****

10.4 The optimal non-linear income tax

The theory of optimal non-linear income taxation was pioneered by Mirrlees (1971, 1976, 1986). Further

noteworthy contributions were made by Sadka (1976), Seade (1977, 1982), Ebert (1992), and Diamond

(1998). The key element in this approach is the link between the income tax system and the labour

supply behaviour of households with different abilities (and wage incomes). The material is technically

rather advanced, and in this section we therefore first develop the general model and then study some

special cases to build intuition. The key question we wish to answer is: should the marginal tax rate rise

or fall with income?

The model features the following main assumptions. Just as in the classical sacrifice theory discussed

above, household skills are distributed according to some continuous distribution. Individual earning
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ability is n and the before-tax earning of a household of type n is defined as:

Z (n) ≡ W (n) L (n)

= nL (n) , (A5.49)

where L (n) is labour supply (in hours) and W (n) is the real wage rate (which equals n, i.e. firms can

observe the individual’s productivity). The tax schedule is rather general in form, but is conditioned on

what the policy maker can actually observe, i.e. income. The budget constraint for a household of type

n is thus:

C (n) = Z (n)− T (Z (n)) , (A5.50)

where C (n) is consumption and T (Z (n)) is the income tax. In addition the household has a time

endowment of unity and (obviously) cannot supply a negative amount of labour. Hence, the time con-

straint is:

0 ≤ L (n) ≤ 1. (A5.51)

The cumulative distribution of people of type n is denoted by F (n) and the density function is f (n) ≡

F′ (n).

The utility function is assumed to be the same for all households:

Un ≡ U (C (n) , L (n)) , (A5.52)

where U (·) has the usual properties: UC > 0, UCC < 0, UL < 0, ULL < 0, and UCCULL − U2
CL > 0.

We need some more assumptions in order to keep the analysis tractable. First, in order to rule out

zero-leisure or zero-consumption corner solutions we assume:

lim
L(n)→1

UL (·) → −∞, (A5.53)

lim
C(n)→0

UC (·) → +∞. (A5.54)

According to (A5.53), if the household is nearly fully employed (L (n) ≈ 1) then the marginal disutility

of labour supply becomes infinite. Similarly, (A5.54) says that at low consumption levels the marginal

utility of consumption is very high. In Figure 10.3 we show indifference curves in (C, L)-space.6 Note

6The slope of the indifference curve is dC/dL = −UL/UC . We write the implicit function C = f (L) with f ′ (L) = −UL/UC .
By differentiating the slope of the indifference curve we get:

d2C

dL2
=

UC [ULC f ′ + ULL]− UL [UCC f ′ + UCL ]

−U2
C

=
−U2

CULL + 2ULUCUCL − U2
LUCC

U3
C

> 0,

where the sign follows from the fact that the numerator is a positive definite quadratic form in UC and UL.
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C(n)

L(n)1

U0
U1

U2

Figure 10.3: Indifference curves in C(n), L(n) space

that utility increases in north-westerly direction, i.e. U2 > U1 > U0.

It turns out to be useful to write utility in terms of consumption and income Z (n) (rather than labour

supply) by noting (A5.49):

Un = U

(

C (n) ,
Z (n)

n

)

≡ u (C (n) , Z (n) , n) . (A5.55)

In Figure 10.4 we illustrate household indifference curves in (C, Z)-space for three different skill levels.

Intuitively, holding constant Z, U0 [n > n0] exceeds U0 [n = n0] because the more skillful person does

not have to work so hard to get that particular income level (and thus get a higher utility level).

Armed with the utility specification (A5.55) we can formulate an important additional assumption,

called the Agent Monotonicity Assumption (or Spence-Mirrlees Single Crossing Property). Technically we

have agent monotonicity if the marginal rate of substitution between consumption and pre-tax income

is a decreasing function of n:

∂

∂n

[

−
uZ

uC

]

< 0, (A5.56)

where uZ ≡ ∂u/∂Z and uC ≡ ∂u/∂C. A number of useful results can now be established (see Myles

(1995, pp. 136-138) or the Intermezzo for proofs):

(R1) The condition (A5.56) is equivalent to the following condition expressed in terms of the original
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C(n)

Z(n)

U0[n < n0]U0[n > n0] U0[n = n0]

!

Figure 10.4: Indifference curves in C(n), Z(n) space

utility function:

∂

∂L

[

−
LUL

UC

]

> 0. (A5.57)

(R2) The agent monotonicity assumption implies that in the absence of taxation, consumption increases

as the wage increases (a sufficient condition is that consumption is not inferior).

(R3) When L > 0 and the sufficient conditions for utility maximization are satisfied then gross income,

Z (n), is increasing in ability, n, i.e. Z′ (n) > 0.

(R4) The agent monotonicity assumption implies that any two indifference curves of households of

different abilities only cross once. See Figure 10.5 for this so-called “single crossing” result.

Intermezzo 10.3

Derivation of results (R1)-(R4). The proof of result (R1) proceeds as follows. We define:

Φ (n) ≡ −
uZ (C, Z, n)

uC (C, Z, n)
, (A)

and differentiate with respect to n:

∂Φ (n)

∂n
= −

uCuZn − uZuCn

u2
C

< 0. (B)
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C(n)

Z(n)

!

!

!

U[n1]

U[n2] 45E

P

R

Figure 10.5: Spence-Mirrlees single-crossing assumption

From the definition of u (C, Z, n) in (A5.55) we know that:

uC ≡
∂U

∂C
= UC, uZ ≡

∂U

∂Z
=

UL

n
,

un ≡
∂U

∂n
= −

UL

n2
, uCn ≡

∂2U

∂C∂n
= −UCL

Z

n2
, (C)

uZn ≡
∂2U

∂Z∂n
=

n ∂UL
∂n − UL

n2
= −

LULL + UL

n2
.

We find by differentiation:

∂

∂L

(
LUL

UC

)

=
UC [LULL + UL]− LULUCL

U2
C

. (D)

By using the relevant results from (C) in (D) we obtain:

∂

∂L

(
LUL

UC

)

= −n2

[

uCuZn − uZuCn

u2
C

]

= n2 ∂Φ (n)

∂n
< 0. (E)

Hence, (A5.56) and (A5.57) are indeed equivalent.

The proofs of results (R2) and (R3) proceeds as follows. We postulate the existence of a

“consumption function” which relates C (n) to income Z (n), i.e. C ≡ Γ(Z). We assume also

that Γ (Z) is twice differentiable. In the absence of taxation, the household budget constraint

is C = Z and the household chooses Z to maximize:

U (Z) ≡ U

(

Γ (Z) ,
Z

n

)

. (F)
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The first-order condition for this problem is:

∂U (Z)

∂Z
= UCΓ′ (Z) +

UL

n
= 0 ⇔

=
UC

Z

[

ZΓ′ (Z) +
LUL

UC

]

= 0. (G)

We define the following function:

Ψ (Z, n) ≡ ZΓ′ (Z) +
LUL

UC
, (H)

so that in the optimum, Z is chosen such that Ψ (Z∗, n) = 0. The second-order condition for

a maximum is:

[
∂2U (Z)

∂Z2

]

Z=Z∗
< 0,

or, equivalently:

[
∂Ψ (Z, n)

∂Z

]

Z=Z∗
< 0. (I)

By totally differentiating the first-order condition Ψ (Z∗, n) = 0 we obtain:

0 = dΨ (Z∗, n) ⇔

0 =

[
∂Ψ (Z, n)

∂Z

]

Z=Z∗
dZ∗ +

∂Ψ (Z∗, n)

∂n
dn ⇔

dZ∗

dn
=

∂Ψ (Z∗, n) /∂n

− [∂Ψ (Z, n) /∂Z]Z=Z∗
, (J)

where the denominator is positive by (I). We know that the numerator is also positive:

∂Ψ (Z∗, n)

∂n
=

∂

∂L

[
LUL

UC

]
∂L

∂n
= n2 ∂Φ (n)

∂n

−Z

n2
> 0, (K)

where we have used L = Z/n and (A5.57). It thus follows from (J) and (K) that:

dZ∗

dn
> 0,

dC∗

dn
> 0, (L)

where we have used the fact that C∗ = Z∗ to get the second expression.

Finally, the proof of result (R4) is as follows. The first-order condition for utility maxi-

mization can be written as:

−
uZ

uC
= 1. (M)
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In Figure 10.5 the optimum is at the point where the indifference curve is tangent to the 45-

degree line. In that figure we show the optimum for two skill levels, where n2 > n1. We have

already shown that dZ∗/dn > 0 and dC∗/dn > 0 so it must be the case that the two optima

are at points P and R, respectively. It follows that the indifference curves cross only once.

****

10.4.1 The self-selection constraint

The policy maker’s choice problem can be viewed in two equivalent ways. The problem can be cast as a

choice of a particular income tax function, T (Z). Equivalently, one can cast the optimal tax problem as

a choice of pre-tax income-consumption pairs (C (n) , Z (n)) for different households. In computing the

optimal tax function the so-called self-selection constraints are of vital importance. These constraints say

that households must find it in their own self-interest to actually choose the (C (n) , Z (n)) pair that the

policy maker intends for them rather than a pair meant for another type of household. If the self-selection

constraints are satisfied then the tax policy is called implementable.

Let C (n) and Z (n) be the consumption-income combination that the policy maker intends for n-type

households. Then the self-selection constraints are satisfied if and only if:

u (C (n) , Z (n) , n) ≥ u
(
C
(
n′
)

, Z
(
n′
)

, n
)

, for all n, n′. (A5.58)

The technical problem with constraints like (A5.58) is that they involve a double-infinity of constraints,

i.e. there is a continuum of types and each type must satisfy (A5.58). This makes it difficult to incorporate

(A5.58) as a constraint on the optimization problem.

The solution to this problem was proposed by Mirrlees (1976). It consists of looking for an alternative

but equivalent set of constraints which ensures that the self-selection constraints are satisfied. It turns

out that the following two conditions ensure that (A5.58) holds:

uC (C (n) , Z (n) , n)C′ (n) + uZ (C (n) , Z (n) , n) Z′ (n) = 0, (A5.59)

Z′ (n) ≥ 0. (A5.60)

These conditions are derived in an Intermezzo below. Note that (A5.59)-(A5.60) must hold for all n.

Equation (A5.59) is the “first-order” necessary condition whilst (A5.60) is the “second-order” sufficient

condition. Intuitively, (A5.59)-(A5.60) represent the optimality conditions of the maximization problem:

“it is utility maximizing to pose as oneself rather than to pose as someone else.”
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Intermezzo 10.4

Derivation of (A5.59)-(A5.60). The derivation of (A5.59)-(A5.60) proceeds as follows. The

self-selection constraints (A5.58) are reproduced here:

u (C (n) , Z (n) , n) ≥ u
(
C
(
n′
)

, Z
(
n′
)

, n
)

, for all n, n′. (A)

We define the following function:

V
(
n′, n

)
≡ u

(
C
(
n′
)

, Z
(
n′
)

, n
)

, (B)

where V (n′, n) represents the utility level of an n-type household who claims to be of type n′

(who poses as somebody else). The self-selection constraints imply that V (n, n′) must attain

a maximum for n′ = n. The first-order necessary condition for this to be the case is:

∂V (n, n′)

∂n′
= 0, for n′ = n, (C)

whilst the second-order sufficient condition is:

∂2V (n, n′)

∂ (n′)2
≤ 0, for n′ = n. (D)

We first work on the first-order condition (C). From (B) we derive:

∂V (n, n′)

∂n′
= uCC′

(
n′
)
+ uZZ′

(
n′
)

. (E)

By using (E) and (C) we find (A5.59):

uC (C (n) , Z (n) , n)C′ (n) + uZ (C (n) , Z (n) , n) Z′ (n) = 0. (F)

Next we work on the second-order condition (D). By differentiating (C) with respect to

n′ = n we find:

d

dn

[
∂V (n, n′)

∂n′

]

=
∂2V (n, n′)

∂n∂n′
+

∂2V (n, n′)

∂ (n′)2
= 0. (G)

It follows that (D) can be written as:

∂2V (n, n′)

∂n∂n′
≥ 0, for n′ = n. (H)
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From (E) we obtain by differentiation:

∂V2 (n, n′)

∂n∂n′
= uCnC′

(
n′
)
+ uZnZ′

(
n′
)

, (I)

(since C′ (n′) and Z′ (n′) do not depend on n). Finally, by using (E), (H) and (I) we obtain:

∂V2 (n, n′)

∂n∂n′
= Z′

(
n′
)
[

uCn
C′ (n′)

Z′ (n′)
+ uZn

]

= Z′
(
n′
)
[

−uCn
uZ

uC
+ uZn

]

≥ 0, for n′ = n. (J)

The single-crossing condition implies that the term in square brackets on the right-hand side

is positive, so that (J) reduces to:

Z′ (n) ≥ 0. (K)

Hence, (A5.58) is equivalent to (A5.59)-(A5.60) holding for every n.

****

10.4.2 Characterizing the optimal tax function

We are now in the position to characterize the optimal non-linear tax problem. With a continuum of

household types, the social welfare function takes the following form:

SW ≡
∫ ∞

0
Ψ
(
u (C (n) , Z (n) , n)

)
f (n) dn. (A5.61)

The revenue requirement constraint is:

∫ ∞

0
[nL (n)− C (n)] f (n) dn = R0, (A5.62)

where R0 is exogenous. On the left-hand side of (A5.62), nL (n) is wage income and C (n) is consump-

tion, and their difference represents the tax paid by an n-type household. By integrating over all house-

hold types the aggregate government budget constraint is obtained. The choice problem of the policy

maker is to choose functions C (n) and Y (n) such that social welfare (A5.61) is maximized subject to the

revenue requirement constraint (A5.62) and the incentive constraints (A5.59)-(A5.60). Unfortunately,

the general problem is very difficult and few robust analytical results can be obtained (see, for example,

Ebert (1992)). For that reason we first focus on two special cases that were also studied by Salanié (2003,

ch. 4). In both cases household utility is assumed to be quasi-linear so that there is no income effect in
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labour supply. In the first special case, the social welfare function is Rawlsian (maximin) whereas the

second special cases uses a general functional form for the social welfare function. We close this section

by means of some numerical simulation results for the general case.

10.4.2.1 Special case I: Quasi-linear-Rawlsian SWF

This subsection makes use of two very special assumptions regarding private and public preferences.

First, the private utility function is assumed to be quasi-linear:

Un = U (C (n) , L (n)) ≡ C (n)−
L (n)1+1/σ

1 + 1/σ
, σ > 0, (A5.63)

where the marginal utility of consumption is constant (at unity) and thus independent of labour supply,

and where the marginal disutility of labour supply is L (n)1/σ and thus independent of consumption.

The parameter σ represents the labour supply elasticity. The second special assumption is that the social

welfare function takes a Rawlsian form:

SW ≡ min
n

Un. (A5.64)

Equation (A5.64) implies that the policy maker wishes to maximize the welfare of the least well-off

individual. This is, of course, the individual with the lowest productivity level (see below).

The indirect utility function for the household of type n is defined as follows:

Vn (n) ≡ max
{L(n),C(n)}

Un subject to: C (n) = nL (n)− T (nL (n)) . (A5.65)

By substituting the household budget constraint it can be rewritten in terms of L (n) as:

Vn (n) ≡ max
{L(n)}

U (nL (n)− T (nL (n)) , L (n)) . (A5.66)

The first-order necessary condition associated with (A5.66) is thus:

n
[
1 − T′ (·)

]
UC = −UL. (A5.67)

By applying the envelope theorem we obtain from (A5.66) and (A5.67):

dVn (n)

dn
=
[
n
[
1 − T′ (·)

]
UC + UL

] dL (n)

dn
+ UCL [1 − T (·)]

= L (n)UC [1 − T (·)] ≥ 0, (A5.68)

where the sign follows from the fact that L ≥ 0 and the assumption that T′ (0) ≤ 1. It follows from

(A5.68) that (indirect) utility is increasing in the productivity level, i.e. the individual with n = 0 is
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the least well-off individual in the economy. This person supplies no labour (see below) and lives off

transfers received from the government, −T (0).

In view of (A5.63) and (A5.67) the labour supply function is given by:

L (n) =
(
n
[
1 − T′ (·)

])σ
. (A5.69)

There is no income effect in labour supply and σ represents the labour supply elasticity with respect to

the after-tax wage.

With the Rawlsian social welfare function (A5.64), the social planner’s objective function coincides

with the utility function of the least-productive individual (who does not work and lives off transfers):

SW ≡ Vn (0) ≡ U (−T (0) , 0) . (A5.70)

In order to maximize social welfare, the policy maker must make transfers (−T (0)) as large as possible

by taxing agents who actually work as much as possible, subject to the incentive constraint (that it does

not pay such agents to pose as somebody else). In an Intermezzo we show that the optimal marginal

income tax on those who actually work (i.e. all individuals with n > 0; see (A5.69)) equals:

T′ (nL (n))

1 − T′ (nL (n))
=

[

1 +
1

σ

]

Φ (n) , (A5.71)

Φ (n) ≡
1 − F (n)

n f (n)
≥ 0, (A5.72)

where T′ (nL (n)) is the marginal tax rate of a household with income level nL (n), 1 − F (n) is the

proportion of the population with productivity level higher than n, and σ is the labour supply elasticity

(σ > 0). It follows from (A5.71) that the marginal income tax rate is positive but less than unity. It is

lower, the more elastic is labour supply (i.e. the larger is σ).

The optimal marginal income tax also depends critically on the distribution of skills in society as

summarized by the Φ (n) function. To build some intuition behind the Φ (n) term we consider two

examples. Example 1: if n is distributed according to the exponential distribution, then it follows that the

optimal marginal income tax declines with n, i.e. the rich face a lower marginal tax rate than the poor

do. Indeed, for the exponential distribution we have f (n) ≡ ζe−ζn and F (n) = 1 − e−ζn (ζ > 0) so that

hazard rate is constant:

f (n)

1 − F (n)
= ζ, (A5.73)

and Φ (n) = 1/ (ζn). It follows from (A5.71) that the optimal marginal tax rate is then declining in n:

T′ (nL (n))

1 − T′ (nL (n))
=

1

ζn

[

1 +
1

σ

]

. (A5.74)
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Example 2: if n follows the Weibull distribution,7 then the optimal marginal tax also declines with n.

For the Weibull distribution we have:

f (n) ≡ ζθe−(ζn)θ (ζn)θ−1 , ζ > 0, θ > 0, (A5.75)

F (n) = 1 − e−(ζn)θ

, (A5.76)

so that the hazard rate depends on n ( f (n) / (1 − F (n)) = ζθ (ζn)θ−1) and the Φ (n) term is:

Φ (n) ≡
1

θ (ζn)θ
. (A5.77)

The optimal marginal tax rate is then declining in n also.

10.4.2.2 Special case II: Quasi-linear-general SWF

In this subsection we continue to assume that utility is quasi-linear utility (as in (A5.63) but we replace

(A5.64) by a general social welfare function of the following form:

SW ≡
∫ ∞

0
Ψ (Un) f (n) dn. (A5.78)

In the Intermezzo below, it is shown that the optimal marginal income tax on working households

equals:

T′ (nL (n))

1 − T′ (nL (n))
=

[

1 +
1

σ

]

∆ (n)Φ (n) , (A5.79)

∆ (n) ≡

∫ ∞

n

[
µ − Ψ′ (U (n))

]
f (n) dn

µ [1 − F (n)]
, (A5.80)

where Φ (n) is defined in (A5.72) above. By writing it in the form (A5.79), Diamond (1998, p. 87) is able to

provide the economic intuition behind the three constituent components. We consider a particular skill

level, n0. The first term appearing on the right-hand side of (A5.79) is 1 + 1/σ.8 Increasing T′ (n0L (n0))

increases the deadweight burden of individuals at this skill level n0. In the absence of income effects in

labour supply, the (uncompensated) labour supply elasticity σ is important in this effect.

The intuition behind the ∆ (n) term is as follows. Increasing T′ (n0L (n0)) also transfers income from

all individuals with higher skills to the government without changing their labour supply distortions.

It can be shown that µ (the Lagrange multiplier of the government budget constraint) is the average of

7Note that the Weibull distribution is the same as the exponential distribution for θ = 1.
8Diamond also considers the case in which (A5.63) depends on leisure:

Un ≡ C (n) +
(1 − L (n))1+1/η

1 + 1/η
, η > 0.

For this case, the first term on the right-hand side of (A5.79) depends on n also.
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the marginal social utilities:

µ =
∫ ∞

0
Ψ′ (U (n)) f (n) dn, (A5.81)

so that it follows from (A5.80) that ∆ (0) = 0. Since Ψ (·) is concave, it follows that ∆′ (n) > 0 (see

Lemma B in Diamond (1998, p. 87)). Taken in isolation, the second term thus argues in favour of a

marginal tax rate that increases with n.

Finally, the intuition behind the Φ (n) term is as follows. The weight applied to the first two terms

on the right-hand side of (A5.79) ((1 + 1/σ)∆ (n0)) is the ratio of individuals with skills above n0 (1 −

F (n0)) to individuals with this skill level ( f (n0)). The 1/n term features in Φ (n) because taxes are

levied on income rather than on hours (recall that n0 is also the gross wage rate).

10.4.2.3 Closing remarks on the quasi-linear model:

It is clear from our discussion of the quasi-linear model that the shape of the optimal marginal income

tax depends on three major factors, namely the labour supply elasticity, the shape of the skills distribu-

tion, and the policy maker’s taste for redistribution. Diamond (1998) presents some further theoretical

results regarding the ∆ (n) and Φ (n) terms. Saez (2001) presents some interesting simulations for the

US economy. He typically finds a U-shaped pattern for optimal marginal tax rates.

10.4.3 General case: simulation results

In this subsection we present some illustrative numerical simulation results taken from Mirrlees (1971,

pp. 193-207).9 Mirrlees (in his Case I) makes use of the following specification. Household utility is a

Cobb-Douglas function in consumption and leisure:

Un = ln C (n) + ln (1 − L (n)) , (A5.82)

where C (n) is consumption and L (n) is labour supply. The social welfare function is exponential (or

linear, if β = 0):

Ψ (Un) =







− 1
β e−βUn

(for β > 0)

Un (for β = 0)

. (A5.83)

Finally, the skill distribution is assumed to be lognormal, with density function:

f (n) =
1

n
exp

[

−
[ln (n + 1)]2

2

]

. (A5.84)

9Other simulations are found in Stern (1976), Tuomala (1990, pp. 93-99), and Kanbur and Tuomala (1994).
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Z (n) C (n)
T(Z(n))

Z(n)
T′ (Z (n))

in % in %
0 0.03 n.a. 23

0.05 0.07 −34 26
0.10 0.10 −5 24
0.20 0.18 9 21
0.30 0.26 13 19
0.40 0.34 14 18
0.50 0.43 15 16

Table 10.1: Mirrlees simulations for the optimal income tax schedule

Benthamite SWF Rawlsian SWF

1 − F (n)
T(Z(n))

Z(n)
T′ (Z (n))

T(Z(n))
Z(n)

T′ (Z (n))

in % in % in % in % in %
50 6 21 10 52
10 14 20 28 34

1 16 17 28 26

Table 10.2: Bentham versus Rawls and the optimal income tax schedule

Mirrlees presents six different cases but we focus on his first case (see Tables I-II in Mirrlees (1971, p.

202)) for which the social welfare function is Benthamite (or “utilitarian”, i.e. β = 0), and the revenue

requirement absorbs 0.013 of total labour supply in efficiency units, i.e. C = Z − 0.013, where C ≡
∫

C (n) f (n) dn is aggregate consumption and Z ≡
∫

Z (n) f (n) dn is aggregate income. The results

obtained by Mirrlees are shown in Table 10.1. Based on these results, Mirrlees draws a number of

conclusions. First, he argues that the marginal tax rates are rather low: “I must confess that I had

expected the rigorous analysis of income-taxation in the utilitarian framework to provide an argument

for high tax rates. It has not done so.” (1971, p. 207). Second, he finds that the tax schedule is very close

to linear. Finally, he argues that “the income tax is not as effective a weapon for redistributing income,

under the assumptions we have made, as one might have expected” (1971, p. 206).

Atkinson and Stiglitz (1980, p. 421) show that the first two conclusions are critically affected by the

shape of the social welfare function (embodying the government’s taste for redistribution). Their results

are summarized in Table 10.2 (which is adapted from Atkinson and Stiglitz (1980, p. 412, Table 13-3)).

Two extreme cases are considered, namely a Benthamite social welfare function (columns 2 and 3) and

a Rawlsian social welfare function (columns 4 and 5). It is clear from the simulations that the marginal

tax rates are much higher for the Rawlsian case. In addition the tax schedule is not close to linear for the

Rawlsian case.

Intermezzo 10.5

Derivation of optimal non-linear income tax. We follow the heuristic derivation by Dia-
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mond (1998, pp. 93-94). The social welfare function is:

SW ≡
∫ ∞

0
Ψ
(
U (C (n) , L (n))

)
f (n) dn, (A)

the resource constraint is:

∫ ∞

0
[nL (n)− C (n)] f (n) dn = R0, (B)

and household utility is quasi-linear:

U (C (n) , L (n)) ≡ C (n)−
L (n)1+1/σ

1 + 1/σ
, σ > 0. (C)

The incentive compatibility constraint (first-order condition of household optimum) is:

n
[
1 − T′ (nL (n))

]
= −UL (L (n)) . (D)

The optimization problem. The planner maximizes (A) subject to (B) and (D). The problem

is first rewritten in a more convenient format. Recall that consumption is C (n) ≡ nL (n)−

T (nL (n)) so that:

C′ (n) ≡ L (n) + nL′ (n)− T′ (nL (n))
[
L (n) + nL′ (n)

]

=
[
1 − T′ (nL (n))

] [
L (n) + nL′ (n)

]

= −
UL (L (n))

n

[
L (n) + nL′ (n)

]
, (E)

where we have used (D) in the final step. By differentiating (C) with respect to n we find:

U′ (n) = C′ (n) + UL (L (n)) L′ (n)

= −
UL (L (n))

n

[
L (n) + nL′ (n)

]
+

UL (L (n))

n
nL′ (n)

= −
L (n)UL (L (n))

n
. (F)

The rewritten optimum control problem now features the following objective function:

SW ≡
∫ ∞

0
Ψ (U (n)) f (n) dn, (G)

and the constraints are:

R0 =
∫ ∞

0

[

nL (n)−

(

U (n) +
L (n)1+1/σ

1 + 1/σ

)]

f (n) dn, (H)
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U′ (n) = −
L (n)UL (L (n))

n
. (I)

The control variable is L (n), the state variable is U (n), and the co-state variable is λ (n).

(Note that (H) is obtained by combining (B) and (C) whilst (I) is just (F).). The Hamiltonian

expression for the optimization problem is:

H ≡

[

Ψ (U (n)) + µ

[

nL (n)− U (n)−
L (n)1+1/σ

1 + 1/σ

]]

f (n)

− λ (n)
L (n)UL (L (n))

n
, (J)

where µ is the Lagrange multiplier for the government budget constraint (H). Note that µ

is constant, a result which has been already been incorporated in (J) (see my own notes on

Diamond (1998)).

The first-order necessary conditions are the following. For the control variable we have

∂H/∂L (n) = 0 or:

µ [n + UL (L (n))] f (n) = λ (n)
UL (L (n)) + L (n)ULL (L (n))

n
. (K)

For the state variable we have −∂H/∂U (n) = λ′ (n) or:

λ′ (n) = −
[
Ψ′ (U (n))− µ

]
f (n) . (L)

The transversality condition is:

λ (0) = lim
n→∞

λ (n) = 0. (M)

Equations (K)-(M) can be used to derive the solution used in the main text.

First we integrate (L) in the interval [n, ∞):

dλ (s)

ds
= −

[
Ψ′ (U (s))− µ

]
f (s)

dλ (s) = −
[
Ψ′ (U (s))− µ

]
f (s) ds

∫ ∞

n
dλ (s) = −

∫ ∞

n

[
Ψ′ (U (s))− µ

]
f (s) ds

lim
s→∞

λ (s)− λ (n) = −
∫ ∞

n

[
Ψ′ (U (s))− µ

]
f (s) ds

λ (n) =
∫ ∞

n

[
Ψ′ (U (s))− µ

]
f (s) ds, (N)
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where we have used (M) in the final step. From (K) we derive:

µUL (·)

[
n

UL (·)
+ 1

]

f (n) =
λ (n)

n
UL (·)

[

1 +
L (·)ULL (·)

UL (·)

]

[
n

UL (·)
+ 1

]

=
λ (n)

nµ f (n)

[

1 +
L (·)ULL (·)

UL (·)

]

. (O)

But from (C) and (D) we obtain:

L (·)ULL (·)

UL (·)
=

1

σ
, (P)

n

UL (·)
= −

1

1 − T′ (·)
. (Q)

By using these results in (O) we obtain the required optimal marginal tax formula:

T′ (·)

1 − T′ (·)
= −

λ (n)

nµ f (n)

[

1 +
1

σ

]

. (R)

Note that (N) and (R) are the expressions found in the text.

For special case I we have:

Ψ′ (U (0)) = 1

Ψ′ (U (n)) = 0, (for n > 0).

Using these properties in (N) we find:

λ (n) = −
∫ ∞

n
µ f (s) ds

= −µ
∫ ∞

n
dF (s)

= −µ [1 − F (n)] , (S)

and by using this result in (R) we find:

T′ (·)

1 − T′ (·)
=

1 − F (n)

n f (n)

[

1 +
1

σ

]

. (T)

Equation (T) coincides with (A5.71) in the text. Note also that (M) and (N) together imply

that:

0 = λ (0) =
∫ ∞

0

[
Ψ′ (U (n))− µ

]
f (n) dn

µ =
∫ ∞

0
Ψ′ (U (n)) f (n) dn,
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i.e. the Lagrange multiplier on the government budget constraint (µ) is equal to the popu-

lation average of Ψ′ (U (n)) in this quasi-linear case (see also Diamond (1998, p. 87)). Intu-

itively, a uniform transfer to all workers leaves labour supply unchanged (no income effect)

and just boosts consumption and thus utility. Hence, µ is the average of the marginal social

utilities.

The sign of ∆′ (n) is obtained as follows. By differentiating (A5.80) with respect to n we

obtain:

∆′ (n) ≡
− [1 − F (n)] [µ − Ψ′ (U (n))] f (n) + µ [1 − F (n)]∆ (n) f (n)

µ [1 − F (n)]2

=
f (n)

µ [1 − F (n)]

[
µ∆ (n)−

[
µ − Ψ′ (U (n))

]]
> 0,

where the sign follows from the fact that Ψ′ (U (n)) is decreasing in n. The proof for this final

claim is as follows. If Ψ′ (U (n)) were constant, then µ∆ (n) would equal:

µ∆ (n) =
[µ − Ψ′ (U (n))]

∫ ∞

n f (s) ds

1 − F (n)
= µ − Ψ′ (U (n)) .

But since Ψ′ (U (n)) is decreasing in n it follows that µ∆ (n) > µ − Ψ′ (U (n)).

****



CHAPTER 10: THE STRUCTURE OF INCOME TAXATION 339

10.5 Key literature

• Atkinson & Stiglitz (1980, lectures 13-14), Jha (1998, chs. 14), or Myles (1995, ch. 5) on theory.

• Stiglitz (1987) and Stern (1987a) on theory.

• Auerbach (1985) on theory.

• Auerbach and Hines (2002) on recent theory and empirics.

• Haveman (1994) for critical remarks.

• Classics: Mirrlees (1971, 1976), Atkinson (1973), Seade (1977), Sadka (1976), Diamond (1998),

Sheshinski (1972), Phelps (1973), Fair (1971), Stiglitz (1982),

• Linear income tax: Stokey (1980), Slemrod et al. (1994), Mirrlees (1990), Sandmo (1983), Hellwig

(1986).

• Recent papers: Konrad (2001), Saez (2002a,2002b), Jones et al. (1993), Corsetti and Roubini (1996),

Plug et al. (1999), Piketty (1997), Brito et al. (1991), Kanbur and Tuomola (1994), Saez (2001),

Cremer et al. (2001).

• Technical: Lollivier and Rochet (1983), Guesnerie and Laffont (1984).

• Survey: Stern (1987c), Atkinson (1990), Ebert (1992), Tuomola (1990), and Fagan (1938)(old litera-

ture).

• Varian (1980). Optimal taxation: Luck and income differences. Also: optimal taxation under

uncertainty: Diamond et al. (1980), Eaton and Rosen (1980a,b).



340 PUBLIC ECONOMICS: TOOLS AND TOPICS



Chapter 11

Public goods and externalities

The purpose of this chapter is to discuss the following topics:

• What do we mean by (pure) public goods?

• What should the supply of public goods be in a first-best world? The Samuelson Rule.

• Second-best supply of public goods: the Modified Samuelson Rule.

• Publicly provided private goods.

• Private provision of public goods: subscription goods.

• Production and consumption externalities and corrective taxation.

11.1 Public goods

In this section we study some basic issues surrounding the public provision of public goods. There are

two important aspects relating to a good or a service, namely the notions of excludability and rivalry.

With excludability the key question is whether it is possible to charge for the use of a particular good or

service, i.e. whether or not agents can be excluded from consuming the good or service (Atkinson and

Stiglitz, 1980, p. 483). Excludability is essentially a technical property. With public television broadcasts

it is technically virtually impossible to exclude reception or measure actual viewing (as signal scramblers

can easily be circumvented). In the case of public freeways it is technically quite possible (though po-

litically often difficult to get through parliament) to install toll booths and electronic measuring devices

to measure actual usage (and charge on that basis). With national defense it is impossible to measure

individual benefits so exclusion is impossible. If a good or service is non-excludable then consumption

cannot be controlled efficiently by a price system.

The second aspect of a good or service has to do its rivalry in consumption. Does one agent’s con-

sumption reduce the amount available to the other agents? For ordinary goods we have that if one agent

341
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consumes them, the other agents can no longer do so (e.g. bread, beer, peanuts, etcetera). In contrast, for

public television broadcast the fact that one agent watches does not reduce in any way the possibility

for all other agents to watch the same broadcast.

Based on the two concepts, pure public goods are those goods are services which are non-excludable

and non-rival in consumption. Pure private goods are those goods and services which are excludable

and rival in consumption. In more formal terms, a pure private good satisfies:

H

∑
h=1

Xh
g = Yg, (A5.1)

where Yg is the supply of good g (where g = 1, . . . , G), and Xh
g is the consumption demand by house-

hold h of good g. According to (A5.1), one household’s consumption of the good reduces the amount

available to other households by exactly that amount. For a pure public good we have:

Xh
g = Yg, for all h = 1, . . . , H. (A5.2)

In the formulation (A5.2), all households consume same the quantity Yg. Implicitly it thus assumes

the absence of free disposal, i.e. households cannot avoid to consume the public goods as in the case

of national defense. If free disposal is possible (e.g. public TV broadcasts) we have the alternative

formulation:

Xh
g ≤ Yg, for all h = 1, . . . , H. (A5.3)

Pure public and pure private goods can be illustrated with the aid of Figure 11.1 for the case with two

households, h1 and h2. If Xg is a pure public good, then the consumption possibility frontier is given

by ABC, and if Xg is a pure private good, the frontier is given by AC. If Xg is somewhere in between a

pure public good and a pure private good, the consumption possibility frontier is the concave dashed

line AEC. This case describes an impure public good, for example highways subject to congestion.

In general terms the consumption possibility frontier can be defined formally as follows:

Γ
(

X1
g, X2

g, . . . , XH
g , Yg

)

= 0. (A5.4)

With this formulation, pure public goods are characterized as follows:

∂Γ

∂Xh
g

= 0, for all h = 1, . . . , H, (A5.5)
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Figure 11.1: Private and public goods

whereas for pure private goods we have:

∂Γ/∂X
h1
g

∂Γ/∂Xh2
g

= 1, for all h1, h2 = 1, . . . , H. (A5.6)

For impure public goods the condition is:

0 <

∂Γ/∂Xh1
g

∂Γ/∂Xh2
g

< 1, for all h1, h2 = 1, . . . , H. (A5.7)

An example of a convenient functional form is the Constant Elasticity of Transformation (CET) function:

Yg = M
(

X1
g, X2

g, . . . , XH
g

)

≡

[

ε−1/σ
1

(

X1
g

)(1+σ)/σ
+ ε−1/σ

2

(

X2
g

)(1+σ)/σ
+ . . . + ε−1/σ

H

(

XH
g

)(1+σ)/σ
]σ/(1+σ)

=

[
H

∑
h=1

ε−1/σ
h

(

Xh
g

)(1+σ)/σ
]σ/(1+σ)

, σ ≥ 0 (A5.8)

Depending on the magnitude of σ, equation (A5.8) nests the cases of a pure private good (σ → ∞), a

pure public good (σ → 0 and εh = 1 for all h), and an impure pure public good (0 < σ ≪ ∞).
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11.1.1 Samuelson rule

In this subsection we study the optimal provision of a pure public consumption good in the context

of the general equilibrium welfare theoretic model introduced in Chapter 9. The utility function of

household h is:

Uh = Uh
(

Xh
1 , . . . , Xh

G, XG+1, Vh
1 , . . . , Vh

F

)

, (A5.9)

where Uh is utility of household h (where h = 1, 2, . . . , H), Xh
g is consumption of the private good g by

household h (where g = 1, 2, . . . , G), and Vh
f is the supply of production factor f by household h (where

f = 1, 2, . . . , F). Note that XG+1 is the (single) public consumption good supplied by the policy maker.

It features in every household’s utility function and is thus a pure public good.

The production technology for good g (for g = 1, . . . , G + 1) is written as:

Yg = Fg
(

Z
g
1 , . . . , Z

g
F

)

, (A5.10)

where Yg is aggregate production, Fg (·) is the production function, and Z
g
f is factor f used in the pro-

duction of good g. The market clearing conditions for the private goods markets (g = 1, 2, . . . , G) are

thus:

Yg =
H

∑
h=1

Xh
g . (A5.11)

For the public good (and in the absence of free disposal) we have:

YG+1 = XG+1, (A5.12)

and for the factor markets ( f = 1, 2, . . . , F) the clearing conditions are:

H

∑
h=1

Vh
f =

G+1

∑
g=1

Z
g
f . (A5.13)

The general equilibrium model is fully described by equations (A5.9)-(A5.13).

In order to derive the necessary conditions for Pareto efficiency we once again focus on an arbitrary

household (say household h = 1), hold every other household’s utility constant (i.e. Uh = Uh
0 for

h = 2, . . . , H), and maximize household 1’s utility subject to the restrictions, i.e. the social planner

chooses Xh
g , Vh

f , Z
g
f , Yg in order to maximize:

U1 = U1
(

X1
1 , . . . , X1

G, XG+1, V1
1 , . . . , V1

F

)

, (A5.14)
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subject to:

Uh
0 = Uh

(

Xh
1 , . . . , Xh

G, XG+1, Vh
1 , . . . , Vh

F

)

, (for h = 2, . . . , H), (A5.15)

and (A5.10)-(A5.13). The Lagrangian expression for this social optimization problem is:

L ≡ U1
(

X1
1 , . . . , X1

G, XG+1, V1
1 , . . . , V1

F

)

+
H

∑
h=2

λh

[

Uh
(

Xh
1 , . . . , Xh

G, XG+1, Vh
1 , . . . , Vh

F

)

− Uh
0

]

+
G+1

∑
g=1

µg

[

Yg − Fg
(

Z
g
1 , . . . , Z

g
F

)
]

+
F

∑
f=1

ξ f

[
H

∑
h=1

Vh
f −

G+1

∑
g=1

Z
g
f

]

+
G

∑
g=1

νg

[
H

∑
h=1

Xh
g − Yg

]

+ νG+1 [XG+1 − YG+1] ,

where the Lagrange multipliers are λh (for h = 2, . . . , H), µg and νg (for g = 1, . . . , G + 1), and ξ f (for

f = 1, . . . , F), i.e. there are (H − 1) + 2 (G + 1) + F Lagrange multipliers in all. To simplify the notation,

we set λ1 = 1. The first-order necessary conditions (assuming an interior solution) are the constraints

and (i) for the private good demands (G × H equations):

∂L

∂Xh
g

= λh
∂Uh

∂Xh
g

+ νg = 0, (A5.16)

(ii) for the public good (1 equation):

∂L

∂XG+1
=

H

∑
h=1

λh
∂Uh

∂XG+1
+ νG+1 = 0, (A5.17)

(iii) for the factor supplies (H × F equations):

∂L

∂Vh
f

= λh
∂Uh

∂Vh
f

+ ξ f = 0, (A5.18)

(iv) for the output decisions (G + 1 equations):

∂L

∂Yg
= µg − νg = 0, (A5.19)

and (v) for the factor demands (F × (G + 1) equations):

∂L

∂Z
g
f

= −µg
∂Fg

∂Z
g
f

− ξ f = 0. (A5.20)

Just as in Chapter 9, we can eliminate the various Lagrange multipliers and derive the condensed
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statement of the necessary conditions for the Pareto optimum. We look at the following pairings. For

two private goods, g1 and g2 we find from (A5.16):

νg1

νg2

=
∂Uh/∂Xh

g1

∂Uh/∂Xh
g2

, (A5.21)

i.e. the marginal rate of substitution (MRS) between any two consumption goods g1 and g2 is the same

for all households h. From (A5.19)-(A5.20) we find for those goods from the production side:

νg1

νg2

=
∂Fg2 /∂Z

g2

f

∂Fg1 /∂Z
g1

f

, (A5.22)

where the right-hand side is the marginal rate of transformation (MRT) between goods g1 and g2. Com-

bining (A5.21) and (A5.22) we obtain the efficient provision condition for private goods:

∂Uh/∂Xh
g1

∂Uh/∂Xh
g2

=
∂Fg2 /∂Z

g2

f

∂Fg1 /∂Z
g1

f

(A5.23)

Just as in Chapter 9, the MRS between goods g1 and g2 (left-hand side) must be equated to the MRT

(right-hand side).

For the pure public good g = G + 1 and any private good g2 we find from (A5.16)-(A5.17):1

νG+1

νg2

=
H

∑
h=1

∂Uh/∂Xh
G+1

∂Uh/∂Xh
g2

. (A5.24)

From the production side we find from (A5.19)-(A5.20):

νG+1

νg2

=
∂Fg2 /∂Z

g2

f

∂FG+1/∂ZG+1
f

, (A5.25)

where the right-hand side is the MRT between the public good g = G + 1 and the private good g2.

Combining (A5.24) and (A5.25) we find the famous Samuelson Rule for the efficient provision of pure

public goods:

H

∑
h=1

∂Uh/∂Xh
G+1

∂Uh/∂Xh
g2

=
∂Fg2 /∂Z

g2

f

∂FG+1/∂ZG+1
f

. (A5.26)

This rule is perhaps best understood by comparing it with the efficient provision condition for private

goods (A5.23). For private goods the MRT must be equated to the MRS. An extra unit of the private

good only affects the welfare of a single recipient. In the optimum, the marginal benefits should be the

same for all households and equal to marginal cost of production–see equation (A5.23). In contrast, for

1This expression is obtained by solving (A5.16) for λh = −νg2
/
(

∂Uh/∂Xh
g2

)

and substituting the result into (A5.17).
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the public good the MRT must be equated to the summation of the MRS’s over all households. In the

optimum, the sum of the marginal benefits over all households must be equated to marginal cost of

production–see equation (A5.26).

Figure 11.2 presents a two-household-two-good (F = G = 2) illustration of the Samuelson Rule.2

In that figure, all private goods are aggregated into one composite good G and the public good is good

G + 1. In panel (a), T (YG, YG+1) is the production possibility frontier and U2
0 is household 2’s fixed

indifference curve. In panel (b), the concave curve BC1C is the vertical difference between T (YG, YG+1)

and U2
0 , and constitutes the consumption possibility locus for household 1. In the bottom panel, house-

hold 1 chooses the optimum at point C1 where there is a tangency between its consumption possibility

locus and an indifference curve. In the top panel, household 2’s consumption bundle is located at point

C2, and the optimal production point is at P. The vertical summation of the slopes at points C1 and C2

equals the slope at point P, i.e.

MRS1
G,G+1 + MRS2

G,G+1 = MRTG,G+1, (A5.27)

where MRSh
G,G+1 and MRTG,G+1 are, respectively, the MRS between goods G and G + 1 for household

h (= 1, 2) and the MRT between these two goods.

We close this subsection on the Samuelson rule with a number of pertinent remarks. First, the prop-

erty of non-excludability has not been used in deriving the Samuelson Rule. Excludability is relevant

for designing feasible (private or public) provision mechanisms (Oakland, 1987, p. 491). Second, the

Samuelson rule is a first-best rule and is thus not easily implemented in a decentralized setting (it re-

quires lump-sum taxes for redistribution and financing purposes). Third, it is relatively straightforward

to model congestion (e.g. excessive road use) or public inputs (e.g. infrastructure) and to re-derive the

appropriate Samuelson rule. These extensions are left as an exercise to the reader.

11.1.2 Modified Samuelson rule

What is the optimal public good provision rule if distorting taxes have to be used? This is a question

which clearly falls within the realm of second-best welfare economics. In this subsection we discuss the

seminal paper by Atkinson and Stern (1974) which provides a thorough analysis of the issues involved

(see also Atkinson and Stiglitz (1980, pp. 490-492)). The main assumptions made in this subsection

are the following. First, we assume identical households and thus abstract from equity considerations.

The social welfare function is the utility of the representative household. Second, there is a single mo-

bile production factor (labour), a single private consumption good (C), and one pure public consumption

good (G). The labour supply decision by households (L) is endogenous. Since the problem is completely

symmetric, there is no need to distinguish individual households and we can simplify notation by rec-

2This figure was suggested by Samuelson (1955) and can also be found in Atkinson and Stiglitz (1980, p. 489) and in Oakland
(1987, p. 489).
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Figure 11.2: The Samuelson rule for public good provision

ognizing that Ch = C and Lh = L (for all h = 1, . . . , H). Third, the production technologies for the two

goods are both linear. Fourth, the policy maker possesses two fiscal instruments, namely the (distort-

ing) labour income tax (tL) and (the non-distorting) lump-sum tax (T, which is used for interpretation

purposes only).

The representative household h (h = 1, . . . , H) has the following (direct) utility function:

U = U (1 − L, C, G) , (A5.28)

where C is consumption of the private good, L is labour supply (so that 1 − L is leisure as the time

endowment is unity), and G is the pure public consumption good. The utility function features the

same functional form for all households and has the usual properties (as far as the private arguments

are concerned), i.e. UC > 0, U1−L > 0, UCC < 0, U1−L,1−L < 0 and UCCU1−L,1−L − U2
C,1−L > 0. In

addition, it is assumed that UG > 0 and UGG < 0. The budget constraint is:

PC = (1 − tL)WL − T, (A5.29)

where P is the consumer price of the private good (which is untaxed), W is the wage rate, tL is the labour

income tax, and T is the lump-sum tax (the same for all households).

The household chooses L and C in order to maximize (A5.28) subject to (A5.29), taking as given the

level of public good provision (G), the prices (W and P), and the taxes (tL and T). The indirect utility
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function is defined in the usual way as (see also Chapter 2):

V ≡ V ((1 − tL)W, P, T, G)

≡ max
{L,C}

U (1 − L, C, G) subject to (1 − tL)WL − T − PC = 0, (A5.30)

and the Marshallian consumption demand and labour supply are obtained by using Roy’s Identity:

C ≡ −
∂V/∂P

α
, (A5.31)

L =
∂V/∂ [(1 − tL)W]

α
, (A5.32)

where α is the marginal utility of lump-sum income (i.e. −α is the marginal disutility associated with

the lump-sum tax).

The production function for the private good features constant returns to scale:

Y =
LY

kY
, (A5.33)

where Y is aggregate output, LY is labour used, and kY is an exogenous productivity index (marginal

and average production cost is thus equal to WkY). Under perfect competition the price is equal to

P = WkY and there are zero pure profits. The production function for the public good is also linear in

labour:

G =
LG

kG
, (A5.34)

where G and LG are, respectively, output and labour used in the public sector, and where kG is an

exogenous productivity index. Since labour is mobile across the two production sectors, private and

public employers face the same wage rate so that marginal production cost in the public sector is WkG.

Under efficient production the cost of one unit of G is WkG.

The market clearing conditions are as follows. For the consumption goods market aggregate con-

sumption demand equals total supply:

HC = Y, (A5.35)

whereas for the labour market aggregate labour supply equals the total demand for labour from the

private and public sectors:

HL = LY + LG. (A5.36)
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Using (A5.33)-(A5.36), the aggregate production possibility constraint can be derived:

HL = kY HC + kGG. (A5.37)

Holding constant aggregate labour supply (left-hand side), equation (A5.36) defines a linear relationship

between aggregate consumption demand (HC) and the level of public good provision (G). An increase

in aggregate labour supply shifts this relationship in a parallel fashion to the right.

The government budget constraint is:

tLWHL + HT = WkGG, (A5.38)

where the left-hand side is total tax revenue and the right-hand side is the total (wage) cost of the public

good provision. The objective function of the policy maker takes the utilitarian (Benthamite) form:

SW ≡ HV, (A5.39)

where V is the indirect utility function of the representative household (see (A5.30) above). The policy

maker chooses G, T (in the first-best) or tL (in the second-best), in order to maximize social welfare

(A5.39) subject to the government budget constraint (A5.38). Labour is used as the numeraire, so W is

taken as given.

The Lagrangian expression for the social optimization problem is:

L ≡ HV ((1 − tL)W, P, T, G) + λ [tLWHL + HT − WkGG] .

The first-order necessary condition for public good provision is:

∂L

∂G
= H

∂V

∂G
+ λW

[

tLH
∂L

∂G
− kG

]

= 0. (A5.40)

If the lump-sum tax could be varied freely (first-best case), then the associated first-order condition would

be:

∂L

∂T
= H

[
∂V

∂T
+ λ

[

tLW
∂L

∂T
+ 1

]]

= 0. (A5.41)

In contrast, if the lump-sum tax is fixed and financing is by means of tL (second-best case) we obtain

instead:

∂L

∂tL
= H

∂V

∂ [(1 − tL)W]

∂ [(1 − tL)W]

∂tL
+ λWH

[

tL
∂L

∂tL
+ L

]

= HW

[

−
∂V

∂ [(1 − tL)W]
+ λ

[

tL
∂L

∂tL
+ L

]]

= 0. (A5.42)
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In order to understand the implications of these first-order conditions we first look at the (relatively

straightforward) first-best case. Once that case is fully understood, we proceed to study the complica-

tions popping up in the second-best case.

11.1.2.1 First-best case

In the first-best social optimum, the policy maker can use the lump-sum tax and thus employ the optimal

tax structure. By using equation (A5.32), the first-order condition for tL (given in equation (A5.42) above)

can be simplified to:

α − λ

λ
=

tL

L

∂L

∂tL
. (A5.43)

Recall (from Chapter 11) that the Slutsky equation for labour supply can be written as:

1

L

∂L

∂ (1 − tL)
=

SLL

L
− W

∂L

∂T
, (A5.44)

where SLL ≡ (∂L/∂ (1 − tL))U0
> 0 is the pure substitution effect. By using (A5.44) and noting that

∂V/∂T = −α, the first-order condition for T (given in (A5.41) above) can be simplified to:

α − λ

λ
= tLW

∂L

∂T

=
tL

L

∂L

∂tL
+

tLSLL

L
, (A5.45)

where we have also used the fact that ∂L/∂tL = −∂L/∂ (1 − tL) to facilitate the comparison between

(A5.43) and (A5.45). Since SLL is strictly positive, it follows from (A5.43) and (A5.45) that under the

optimal (first-best) tax system the policy maker sets tL = 0 so that λ = α, i.e. it costs one euro to raise

one euro of public funds (there is no excess burden associated with the lump-sum tax). By using these

results in (A5.40) and noting that ∂V/∂G = ∂U/∂G we find:

H
∂U

∂G
= λWkG, (A5.46)

The first-order condition for the household optimum is ∂U/∂C = αP so that (A5.46) can be rewritten in

the familiar format of the Samuelson rule:

H ∂U/∂G

∂U/∂C
=

WkG

P
=

kG

kY
. (A5.47)

The sum of the marginal rates of substitution between G and C (left-hand side) is equated to the marginal

rate of transformation (kG/kY on the right-hand side). Equation (A5.47) is thus the exact counterpart of

(A5.26) in the context of the context of the two-good model.
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11.1.2.2 Second-best case

In the second-best social optimum the policy maker does not have access to the lump-sum tax and only

(A5.40) and (A5.42) are relevant. After some manipulations these expressions can be rewritten as:

H ∂U/∂G

∂U/∂C
=

λ

α

1

kY

[

kG − tLH
∂L

∂G

]

, (A5.48)

α

λ
= 1 +

tL

L

∂L

∂tL
. (A5.49)

Several things are worth noting about these expressions. First, it follows from (A5.48) that, if G is com-

plementary with leisure (so that ∂ (1 − L) /∂G > 0 and ∂L/∂G < 0) then (for tL > 0) the right-hand

side contains an additional revenue term −tLH∂L/∂G > 0. Second, it follows from (A5.49) that for an

upward sloping (uncompensated) labour supply curve ((tL/L) (∂L/∂tL) < 0) the social cost of raising

one dollar of public funds (λ) exceeds the private marginal utility of income (α), i.e. λ > α and there is

an excess burden associated with the labour income tax.

By substituting (A5.49) into (A5.48) we obtain the formula for the modified Samuelson rule:

H ∂U/∂G

∂U/∂C
=

kG
kY

− tLH 1
kY

∂L
∂G

1 + tL
L

∂L
∂tL

. (A5.50)

This modified Samuelson rule can be interpreted as follows. The left-hand side represents the sum of

the marginal rates of substitution between the public good and the private consumption good. The

right-hand side is the social cost of the public good in terms of the commodity. This social cost dif-

fers from marginal rate of transformation (≡ kG/kY here) for two reasons: (i) if ∂L/∂G < 0 then an

increase in G increases the excess burden because of an erosion of the labour income tax base, and (ii) if

(tL/L) (∂L/∂tL) < 0 then λ/α > 1 which also increases the social cost of the public good.

Intermezzo 11.1

Alternative expression for (A5.49). One often finds slightly different (though equivalent)

expressions for (A5.49) in the literature which make use of the concept of social marginal

utility of income (β):

β − λ

λ
= −tL

SLL

L
(A)

= −σLL
tL

1 − tL
, (B)

where SLL ≡ (∂L/∂ (1 − tL))U0
> 0 is (proportional to) the pure substitution effect in labour
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supply and β and σLL are defined as follows:

β ≡ α − λtLW
∂L

∂T
, (C)

σLL ≡

(
∂L

∂ [(1 − tL)W]

)

U0

(1 − tL)W

L
=

(1 − tL) SLL

L
> 0. (D)

In equation (C), β represents the social marginal utility of income (see also Chapter 10) and

−∂L/∂T is the income effect in labour supply (which is negative if leisure is normal in con-

sumption). In equation (D), σLL is the slope of the Hicksian labour supply curve (this slope

is of course positive).

The expressions (A) and (B) are obtained from (A5.49) by using the Slutsky equation

(A5.44):

α − λ

λ
= −

tL

L

∂L

∂ (1 − tL)

= −tL

[
SLL

L
− W

∂L

∂T

]

⇔

β − λ

λ
= −

tLSLL

L
= −σLL

tL

1 − tL
.

It is easy to demonstrate that for positive required government revenue, λ exceeds β. We

multiply equation (A) by tLWH to obtain:

λ − β

λ
tLWHL = SLLWHt2

L

λ − β

λ
[WkGG − HT] = WHSLLt2

L > 0, (E)

where we have used the government budget constraint (A5.38) to get to the second line. The

sign on the right-hand side of (E) follows from that fact that SLL > 0 and t2
L > 0. So the

left-hand side of (E) confirms that for positive required revenue (WkGG − HT > 0) it must

be the case that λ > β.

****

We close this subsection on the modified Samuelson rule with a cautionary remark due to Atkinson

and Stern (1974). Although it is rather tempting to do so, one cannot infer anything about the levels of

public goods provision under the first-best and second-best cases by just comparing first order condi-

tions (A5.47) and (A5.50). Even if the right-hand side of (A5.50) exceeds the right-hand side of (A5.47)

it is not automatically the case that G is lower if tL is used for financing than if T is used. Despite the

fact that the left-hand sides of (A5.47) and (A5.50) look the same, they are nevertheless different because
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they depend on the triple (tL, T, G). In the first-best case, this triple is set according to
(
0, TF, GF

)
where

TF and GF are the optimal choices for T and G. In the second-best case, the triple is set according to
(
tS
L, 0, GS

)
, where TS and GS are the second-best optimal choices for tL and G. Since there are three

things that differ between the first-best and second best cases, no unambiguous statement concerning

the level of G under the two scenarios is possible. We return to this issue in an exercise to this chapter.

11.1.3 Redistribution

Up to this point we have abstracted from distributional issues by restricting attention to efficiency con-

sideration in subsection 11.1.1 and by adopting a symmetric utilitarian approach in subsection 11.1.2. In

this subsection the horizon is broadened by including redistributional considerations into the analysis.3

Once the assumption of identical households is abandoned, one could pose the question whether the

poor value public goods more highly than the rich do. And if so, how does this phenomenon affect the

(modified) Samuelson rule? We study these questions in the context of a model in which households

differ in ability and the policy maker must determine the optimal provision of a pure public consump-

tion good. In concrete terms, we use the linear income tax model (studied in Chapter 11 above) and

extend it by incorporating a pure public consumption good.

The (direct) utility function of household h (h = 1, . . . , H) is:

Uh = U
(

1 − Lh, Ch, G
)

, (A5.51)

where the functional form U (·) is the same for all households. Households differ in their labour pro-

ductivity (due to innate/exogenous skill differences) and the effective labour supply in efficiency units is

denoted by nhLh, where Lh is labour supply in hours of work and nh is an indicator of efficiency. There

is no non-labour income so the household budget constraint is given by:

Ch = WhLh − Th, (A5.52)

where Wh is the wage of household h and Th is the tax paid by that household. We focus on the simple

case, where the tax schedule is linear:

Th = −Sh + tLWhLh, (A5.53)

where Sh is the lump-sum subsidy (or tax, if Sh
< 0) and tL is the (constant) marginal tax rate (satisfying

0 < tL < 1). Household h chooses Ch and Lh in order to maximize (A5.51) subject to (A5.52) and (A5.53),

3This subsection draws on Atkinson and Stiglitz (1980, pp. 494-497).
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taking as given Wh, Sh, tL, and G. The Lagrangian for this optimization problem is:

Lh ≡ U
(

Ch, 1 − Lh, G
)

+ αh
[

Sh + (1 − tL)WhLh − Ch
]

,

where αh is the Lagrange multiplier (equal to the marginal utility of lump-sum income to household h

in the optimum). The first-order necessary conditions are the constraint and:

∂U

∂Ch
= αh, (A5.54)

∂U

∂
(
1 − Lh

) = αh (1 − tL)Wh. (A5.55)

It follows from (A5.54)-(A5.55) that the household’s labour supply decision is distorted if the marginal

tax rate is non-zero. The first-order condition (A5.54)-(A5.55) and the constraint implicitly define the

Marshallian consumption demand and labour supply which we write in general terms as:

Ch = C
(

Sh, (1 − tL)Wh, G
)

, (A5.56)

Lh = L
(

Sh, (1 − tL)Wh, G
)

. (A5.57)

Finally, by substituting (A5.56)-(A5.57) into the direct utility function (A5.51) we find the indirect utility

function:

Vh = V
(

Sh, (1 − tL)Wh, G
)

. (A5.58)

From duality theory we recall the following useful properties of the indirect utility function:4

∂Vh

∂Sh
=

∂V (·)

∂Sh
= αh, (A5.59)

∂Vh

∂ (1 − tL)
=

∂V (·)

∂ (1 − tL)
= αhWhLh, (A5.60)

∂V

∂G
=

∂U

∂G
. (A5.61)

The objective function of the policy maker consists of an individualistic social welfare function:

SW ≡ Ψ
(

U1, U2, . . . , UH
)

, (A5.62)

where Ψh ≡ ∂Ψ/∂Uh
> 0 for all h. The policy maker cannot directly observe (or indirectly infer) the

4Roy’s Lemma for labour supply says:

Lh =
∂V/∂

[
(1 − tL)Wh

]

∂V/∂Sh
=

1

Wh

∂V/∂ (1 − tL)

αh
,

from which the result in (A5.60) follows.
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household’s innate ability nh so a tax on innate ability is infeasible. The policy maker thus faces a second-

best social optimization problem! He can observe WhLh but not Wh and Lh separately. For this reason

the tax function (A5.53) is conditioned on WhLh (rather than on nh).

The production function for the private consumption good is linear:

Y =
1

kY

H

∑
h=1

nhLh
Y, (A5.63)

where Y is aggregate output, kY is an exogenous productivity index, Lh
Y is labour of type h used in the

Y-sector, nh is productivity of type-h labour, and nhLh
Y is thus the labour input measured in efficiency

units. The profit function of the representative firm is defined as follows:

Π ≡ PY −
H

∑
h=1

WhLh
Y

=
P

kY

H

∑
h=1

nhLh
Y −

H

∑
h=1

WhLh
Y, (A5.64)

where P is the output price and nh is assumed to be observable to the firm.5 Under perfect competition

there are zero pure profits and the wage paid to type-h workers is:

Wh =
nh

kY
, (A5.65)

where we have incorporated the assumption that the consumption good is used as the numeraire com-

modity, i.e. we have set P = 1. Not surprisingly, the real wage of type-h labour is proportional to innate

ability nh.

The production function for the public consumption good is:

G =
1

kG

H

∑
h=1

nhLh
G, (A5.66)

where G is output of the public good, Lh
G is type-h labour used in the public sector, and kG is an ex-

ogenous productivity index. (In its role of employer of civil servants, the government is thus assumed

to be able to observe the innate ability of its employees!) The government is assumed to produce the

public good in an efficient, cost-minimizing manner, i.e. it minimizes labour cost ∑
H
h=1 WhLh

G subject to

the technology (A5.66). The first-order condition is:

Wh

PG
=

nh

kG
, (A5.67)

where PG is marginal (and average) production cost for G. Note that from (A5.65) and (A5.67) we obtain

5The firm chooses the different types of labour in a profit maximizing manner. We obtain from (A5.64) that ∂Π/∂Lh
Y =

Pnh/kY − Wh = 0 or Wh/P = nh/kY .
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the expression for the relative price of the public good PG = kG/kY (relative, that is, to the consumption

good).

The market clearing conditions are:

Y =
H

∑
h=1

Ch, (A5.68)

Lh = Lh
Y + Lh

G, (for h = 1, . . . , H). (A5.69)

According to (A5.68), aggregate supply of the private good (left-hand side) equals aggregate demand

for the consumption good by all households (right-hand side). Similarly, (A5.69) equates the supply of

type-h labour (left-hand side) to the demand for that labour type in the private and public sectors.

Finally, the aggregate production constraint implied by (A5.63), (A5.66), and (A5.68) is:

H

∑
h=1

nhLh = kY

H

∑
h=1

Ch + kGG, (A5.70)

whilst the government budget constraint is:

tL

H

∑
h=1

WhLh =
H

∑
h=1

Sh + PGG. (A5.71)

The left-hand side is the total revenue raised by means of the labour income tax. The right-hand side is

total outlays of the government, consisting of lump-sum transfers and outlays on the public good.

11.1.3.1 First-best social optimum

In order to build up intuition, we first study the first-best social optimization problem. Based on the

previous analysis in subsection 11.1.2.1 one would expect the policy maker to set tL = 0 and to raise

all required revenue in a non-distorting fashion. Does the analysis give us this conclusion? By using

(A5.58) in (A5.62), the policy maker’s objective function can be written as follows:

SW ≡ Ψ
(

V
(

S1, (1 − tL)W1, G
)

, V
(

S2, (1 − tL)W2, G
)

, . . . ,

V
(

SH , (1 − tL)WH , G
) )

. (A5.72)

The revenue requirement constraint is given in (A5.71) and the policy instruments are G, tL, and Sh (for

h = 1, . . . , H). The policy maker sets these instruments in such a way as to maximize (A5.72) subject to

(A5.71). The associated Lagrangian is:

L ≡ SW + λ

[
H

∑
h=1

[

tLWhLh
(

Sh, (1 − tL)Wh, G
)

− Sh
]

− PGG

]

,
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where λ is the Lagrange multiplier for the government budget constraint. The first-order necessary

conditions consist of the constraint and:

∂L

∂G
=

H

∑
h=1

Ψh
∂V

∂G
+ λ

[

tL

H

∑
h=1

Wh ∂Lh

∂G
− PG

]

= 0, (A5.73)

∂L

∂Sh
= Ψh

∂V

∂Sh
+ λ

[

tLWh ∂Lh

∂Sh
− 1

]

= 0, (for h = 1, . . . , H) , (A5.74)

∂L

∂tL
= −

H

∑
h=1

Ψh
∂V

∂ (1 − tL)
+ λ

[
H

∑
h=1

WhLh − tL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)

]

= 0. (A5.75)

By using (A5.59)-(A5.61) we can simplify these expressions to:

H

∑
h=1

Ψh
∂U

∂G
= λ

[

PG − tL

H

∑
h=1

Wh ∂Lh

∂G

]

, (A5.76)

0 = Ψhαh + λ

[

tLWh ∂Lh

∂Sh
− 1

]

, (for h = 1, . . . , H) , (A5.77)

0 =
H

∑
h=1

ΨhαhWhLh − λ
H

∑
h=1

WhLh + λtL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)
. (A5.78)

Equation (A5.76) is the condition determining the optimal level of public goods provision, (A5.77) is

the condition determining the optimal lump-sum subsidy/tax for each household (Sh), and (A5.78) is the

condition determining the optimal marginal tax rate. Jointly with (A5.71), equations (A5.76)-(A5.78)

determine
(
G, S1, . . . , SH , tL, λ

)
.

Let us test our intuition (mentioned above) by rewriting the formulae dealing with the tax system

(i.e. equations (A5.77) and (A5.78)). The Slutsky equation for household h is:

∂Lh

∂ (1 − tL)
= Sh

LL + WhLh ∂Lh

∂Sh
, (A5.79)

where Sh
LL ≡

(

∂Lh/∂ (1 − tL)
)

U0

> 0 is the pure substitution effect for household h.6 We define the

social marginal utility of income as:

βh ≡ Ψhαh + λtLWh ∂Lh

∂Sh
. (A5.80)

By using (A5.79)-(A5.80), equations (A5.77) and (A5.78) can now be written in a rather compact format

as:

βh = λ, (A5.81)

6Note that (A5.79) differs from (A5.44) because (i) the income and pure substitution effects are household specific and (ii)

because Sh is a lump-sum transfer (rather than a tax, as in (A5.44)).
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0 =
H

∑
h=1

[

βh − λ +
λtLSh

LL

Lh

]

WhLh. (A5.82)

If the policy maker has access to h-specific lump-sum transfers, he will set the marginal social utility of

income equal to λ for all households (see (A5.81)). It follows from (A5.82) that the labour income tax will

be set equal to zero (as the pure substitution effect is strictly positive). hence, in the first-best optimum,

we have:

tL = 0, βh ≡ Ψhαh = λ, (A5.83)

i.e. redistribution and public good financing is achieved by means of the non-distorting tax. No distort-

ing labour income tax is needed.

In view of these results, the first-order condition for public good provision (A5.76) reduces to the

standard Samuelson rule:

H

∑
h=1

Ψh
∂U
∂G

λ
= PG ⇔

H

∑
h=1

Ψh
∂U
∂G

Ψhαh
= PG ⇔

H

∑
h=1

∂U/∂G

∂U/∂Ch
=

kG

kY
, (A5.84)

where we have used the fact that PG = kG/kY in the final step. Equation (A5.84) generalizes (A5.47) to

the case of heterogeneous households.

11.1.3.2 Second-best social optimum, I

Depending on the kind of additional restriction faced by the policy maker, the social optimization prob-

lem becomes a second-best problem. Here we study a restricted scenario in which it is assumed that the

only tax instrument available is a uniform lump-sum tax, i.e. Sh = S for all h and there is no labour

income tax (tL = 0). What does the second-best optimal provision of public goods rule look like under

this scenario?

The policy maker’s objective function is now:

SW ≡ Ψ
(

V
(

S, W1, G
)

, V
(

S, W2, G
)

, . . . , V
(

S, WH , G
) )

, (A5.85)

the revenue requirement constraint is:

−HS = PGG, (A5.86)

and the instruments are G and S. Writing the Lagrangian as L ≡ SW − λ [HS + PGG], we obtain the
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following first-order conditions:

∂L

∂G
= 0 ⇔ λPG =

H

∑
h=1

Ψh
∂U

∂G
, (A5.87)

∂L

∂S
= 0 ⇔

1

H

H

∑
h=1

Ψhαh = λ, (A5.88)

where we have used (A5.59) and (A5.61).

Defining the social marginal utility of income as βh ≡ Ψhαh and its mean value as β̄ ≡ ∑
H
h=1 βh/H,

we can rewrite (A5.88) in compact format as:

β̄ = λ. (A5.89)

Whereas in the first-best optimum, the policy maker can manipulate Sh in such a way as to equate βh to

λ for all households (see equation (A5.83) above), in this version of the second-best optimum, the policy

maker can only manipulate S and can thus only make the average of all βh’s equal to λ. By using the

definitions of βh and β̄ and noting (A5.89), equation (A5.87) can be rewritten as:

H

∑
h=1

Ψh
∂U
∂G

β̄
= PG ⇔

H

∑
h=1

αhΨh
∂U
∂G

β̄αh
= PG ⇔

H

∑
h=1

βh

β̄

∂U/∂G

∂U/∂Ch
=

kG

kY
. (A5.90)

Equation (A5.90) is the counterpart to (A5.84) in a second-best setting. In contrast to the (first-best)

Samuelson Rule, here it is the weighted sum of marginal rates of substitution that features on the left-

hand side, with the weight applied to household h equalling βh/β̄.

It is straightforward (though a little tedious) to show that (A5.90) can also be written in terms of a

covariance term (see the Intermezzo below):

kG

kY
=

H

∑
h=1

MRSh

[

1 + cov

(

βh

β̄
/,

MRSh

MRS

)]

, (A5.91)

where MRSh ≡ (∂U/∂G) /
(

∂U/∂Ch
)

is the marginal rate of substitution between G and Ch for house-

hold h, cov
(

βh/β̄, MRSh/MRS
)

is the covariance between βh/β̄ and MRSh/MRS representing the dis-

tributional characteristic of the public good. Compared to the first-best rule (A5.84), the second-best rule

takes into account the covariance between the social marginal utility of income and the marginal rate of

substitution. Consider the case where βh declines with income of household h. Then for a public good

that is valued more highly by the poor than by the rich (cov
(

βh/β̄, MRSh/MRS
)

> 0), the covariance

term is positive and the term in round brackets on the left-hand side of (A5.91) is greater than unity, i.e.

∑
H
h=1 MRSh

< MRT (see Atkinson and Stiglitz, 1980, p. 496).
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11.1.3.3 Second-best social optimum, II

We now expand the set of tax instruments available to the policy maker by assuming that both the

uniform lump-sum tax (Sh = S for all h) and the labour income tax (tL) can be used for financing and

redistribution purposes. In this version of the second-best problem the policy maker’s objective function

is:

SW ≡ Ψ
(

V
(

S, (1 − tL)W1, G
)

, . . . , V
(

S, (1 − tL)WH , G
) )

, (A5.92)

the revenue requirement is:

tL

H

∑
h=1

WhLh − HS = PGG, (A5.93)

and the instruments are G, S and tL. The Lagrangian expression is:

L ≡ SW + λ

[

tL

H

∑
h=1

WhLh
(

S, (1 − tL)Wh, G
)

− HS − PGG

]

,

and the (most interesting) first-order conditions are:

∂H

∂G
= 0 ⇔

L

∑
h=1

Ψh
∂V

∂G
= λ

[

PG − tL

H

∑
h=1

Wh ∂Lh

∂G

]

, (A5.94)

∂H

∂S
= 0 ⇔

L

∑
h=1

Ψh
∂V

∂S
= λ

[

H − tL

H

∑
h=1

Wh ∂Lh

∂S

]

, (A5.95)

∂H

∂tL
= 0 ⇔

L

∑
h=1

Ψh
∂V

∂ (1 − tL)
= λ

[
H

∑
h=1

WhLh − tL

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)

]

. (A5.96)

By using (A5.59)-(A5.61) these expressions can be further simplified:

λPG =
H

∑
h=1

βhMRSh + λtLH
∂WL

∂G
, (A5.97)

β̄ = λ

[

1 − tL
∂WL

∂S

]

, (A5.98)

0 =
H

∑
h=1

βhWhLh − λHWL

[

1 −
tL

WL

∂WL

∂tL

]

, (A5.99)

where we have defined βh ≡ Ψhαh, β̄ ≡ ∑
H
h=1 βh/H and WL ≡ ∑

H
h=1 WhLh/H.7 Equation (A5.97) is

the condition determining the optimal level of public goods provision, (A5.97) determines the optimal

7Note that, since Wh is constant, we have:

H
∂WL

∂G
≡

H

∑
h=1

Wh ∂Lh

∂G
, H

∂WL

∂S
≡

H

∑
h=1

Wh ∂Lh

∂S
, H

∂WL

∂ (1 − tL)
≡

H

∑
h=1

Wh ∂Lh

∂ (1 − tL)
.
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lump-sum subsidy/tax, and (A5.99) determines the optimal labour income tax rate. Jointly with the rev-

enue requirement constraint (A5.93), these conditions determine (G, S, tL, λ). The modified Samuelson

rule is obtained by combining (A5.97)-(A5.98) and rewriting slightly:

λ

β̄

[

PG − tLH
∂WL

∂G

]

=
H

∑
h=1

βh

β̄
MRSh ⇔

kG
kY

− tLH ∂WL
∂G

1 − tL
∂WL

∂S

=
H

∑
h=1

MRSh

[

1 + cov

(

βh

β̄
,

MRSh

MRS

)]

, (A5.100)

where we have used the fact that PG = kG/kY. Compared to (A5.91), this expression only differs on the

left-hand side. An “inverse-elasticity type” expression for the optimal labour income tax formula can be

derived from (A5.99):

tL

1 − tL
=

1

σL

λ − β̂

λ
, (A5.101)

where β̂ and σL are defined as follows:

β̂ ≡
∑

H
h=1 βhWhLh

HWL
, (A5.102)

σL ≡
∂ ∑

H
h=1 WhLh

∂ (1 − tL)

1 − tL

∑
H
h=1 WhLh

=
∂WL

∂ (1 − tL)

1 − tL

WL
. (A5.103)

The derivation of (A5.101) is left as exercise to the reader (Hint: see the derivation of equation (11.37) in

Chapter 11).

Intermezzo 11.2

Derivation of the covariance formula (A5.91). We write the expression in (A5.90) as follows:

H

∑
h=1

βh

β̄
MSRh =

kG

kY
, (A)

where MSRh ≡ (∂U/∂G) /
(

∂U/∂Ch
)

. It follows that:

kG

kY
=

H

∑
h=1

βh + β̄ − β̄

β̄
MSRh

=
H

∑
h=1

MSRh +
H

∑
h=1

βh − β̄

β̄
MSRh

=
H

∑
h=1

MSRh +
H

∑
h=1

βh − β̄

β̄

(

MSRh − MRS
)

(B)
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where we have used the fact that:

H

∑
h=1

βh − β̄

β̄
MRS =

MRS

β̄

[
H

∑
h=1

(

βh − β̄
)
]

= 0. (C)

Recall the definition of the covariance between variables xh and yh:

cov (xh, yh) ≡
1

H

H

∑
h=1

(xh − x̄) (yh − ȳ) (D)

=
1

H

H

∑
h=1

xhyh − x̄ȳ, (E)

where x̄ ≡ ∑
H
h=1 xh/H and ȳ ≡ ∑

H
h=1 yh/H are the respective means. By using (D) in (B) we

find:

kG

kY
=

H

∑
h=1

MSRh + Hcov

(

βh

β̄
, MRSh

)

. (F)

An alternative way to write (F) is:

kG

kY
=

H

∑
h=1

MSRh

[

1 + cov

(

βh

β̄
,

MRSh

MRS

)]

, (G)

where we have used the fact that:

Hcov

(

βh

β̄
, MRSh

)

= HMRScov

(

βh

β̄
,

MRSh

MRS

)

=
H

∑
h=1

MSRhcov

(

βh

β̄
,

MRSh

MRS

)

. (H)

****

11.2 Private provision of public goods

Up to this point attention has been restricted to publicly provided public goods. The private provision of

public goods is however quite significant in most countries. One can think, for example, of contributions

to national and international charities, donations to political parties / pressure groups, public goods (or

public “bads”) as by-product of private goods, and foundations for arts, sciences, health care, e.g. Ford

Foundation, Carnegie-Mellon, Bill & Melinda Gates Foundation, Getty Museum. In this section we

study two models dealing with the private provision of public goods, namely the private subscription

model and the externality-based model.
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11.2.1 Private subscriptions

In the subscription model of public goods provision, individual households value the public good and

make individual contributions in order to increase its production. This approach was studied inter alia

by Malinvaud (1972, pp. 211-218) and Atkinson and Stiglitz (1980, pp. 505-507). In this subsection we

present a simple subscription model and study its key properties. The key assumptions of the model

are the following. There are H identical households who each possess selfish motives for contributing

to the cost of public goods production. Households take the contributions by other households as given

(Cournot-Nash assumption). The technologies for the private and public goods are both linear, and

labour is the only production factor. Labour is used as the numeraire (W = 1). The key question to be

answered is whether the subscription equilibrium gives rise to excessive or deficient provision of public

goods (from a social point of view).

The representative household h (h = 1, . . . , H) has a (direct) utility function defined over the private

good and the total supply of the pure public good:

Uh = U
(

Ch, Gh + Gothers
)

, (A5.104)

where Ch is consumption of the private good, Gh is the amount of the public good provided by house-

hold h, and Gothers is the total supply of the public good by all other households:

Gothers ≡
H

∑
i=1
i 6=h

Gi (A5.105)

The utility function U [·] has the usual properties: UC > 0, UG > 0, UCC < 0, UGG < 0 and UCCUGG −

U2
CG > 0 (i.e., the indifference curves are downward sloping in

(

Ch, Gh
)

space and bulge towards the

origin). [REFER TO CHAPTER 2] The budget constraint of household h is:

PCh = W − PGGh, (A5.106)

where P is the consumer price of the private good, W is wage income (Lh = 1 is the exogenous labour

supply), and PG is the price of the public good (see below). The household chooses Ch and Gh in order to

maximize (A5.104) subject to (A5.106), taking as given the wage rate and both prices (W, P, PG) and the

donations by other households (Gothers; the Cournot-Nash assumption). Clearly, the household cannot

give a negative contribution, i.e. an additional constraint is:

Gh ≥ 0 (A5.107)

Production conditions are exactly the same as in the model of subsection 11.1.2, i.e. the technologies

are Y = LY/kY (for the private good) and G = LG/kG (for the public good), where LY and LG are the
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respective labour inputs. The prices are P = WkY (for the private good) and PG = WkG (for the public

good). The private goods market clearing condition is:

H

∑
h=1

Ch = Y, (A5.108)

and the labour market clearing condition is:

(
H

∑
h=1

Lh =

)

H = LY + LG. (A5.109)

The decision problem for household h is best solved by transforming it slightly. The utility function

(A5.104) is rewritten as:

Uh = U
(

Ch, G
)

, (A5.110)

where G is the total public good provision:

G ≡ Gh + Gothers. (A5.111)

Using (A5.111) the budget equation (A5.106) can be rewritten as:

kYCh + kGG = 1 + kGGothers, (A5.112)

where we have used P = WkY, PG = WkG, and we have set W = 1. Finally, the non-negativity constraint

(A5.107) is rewritten as:

G ≥ Gothers. (A5.113)

In the transformed model, the household chooses Ch and G in order to maximize (A5.110) subject to

(A5.112) and (A5.113). The Lagrangian for this problem is:

L ≡ U
(

Ch, G
)

+ α
[

1 + kGGothers − kYCh − kGG
]

+ η
[

Gothers − G
]

,

where α and η are the Lagrange multipliers for, respectively, the budget constraint and the non-negativity

constraint. The first-order necessary conditions for Ch and G are:

∂L

∂Ch
=

∂U

∂Ch
− αkY = 0, (A5.114)

∂L

∂G
=

∂U

∂G
− αkG − η = 0, (A5.115)
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whilst the first-order conditions for α and η are

∂L

∂α
= 0, (A5.116)

∂L

∂η
= Gothers − G ≥ 0, η ≥ 0, η

∂L

∂η
= 0. (A5.117)

In (A5.117) the so-called Kuhn-Tucker conditions are used because it may very well be the case that house-

hold h chooses not to contribute to the public good provision. The interpretation of the first-order con-

ditions is facilitated by looking at two cases. In case 1, assume that η > 0. Then it follows from the third

expression in (A5.117) (the complementary slackness condition) that ∂L/∂η = 0, i.e. G = Gothers and

household h does not contribute to the public goods supply. In case 2, we assume that the household

contributes (G > Gothers). Then it follows from (A5.117) that ∂L/∂η > 0 and η = 0. In case 2 we have an

interior solution with:

∂U(Ch ,G)
∂G

∂U(Ch ,G)
∂Ch

=
kG

kY
, ( for all h = 1, . . . , H) . (A5.118)

According to (A5.118), the own marginal rate of substitution between the public good and the private

good of household h is equated to the marginal rate of transformation between these two goods. (Note

that (A5.118) holds for all households because the model is completely symmetric, i.e. all households

face the same conditions.)

In Figure 11.3 the model is illustrated graphically. In that figure, HBC0 is the household budget line

for the case that the other households do not contribute, i.e. Gothers = 0. The household chooses point

E0 and contributes G0. Similarly, HBC1 is the budget constraint for Gothers = Gothers
1 > 0. The slope

of the budget line is unchanged (and equal to kG/kY) and the household now chooses point E1 and

contributes G1. At point C we have Ch = 1/kY so that (A5.112) implies that G = Gothers
1 there. Since

G1 is the optimum choice, the line segment CD measures the household’s own contribution. Note that

for simplicity we assume homothetic preferences so that the tangencies between HBC0 and HBC1 and the

indifference curves lie along a straight line through the origin. We interpret this Engel curve as a Nash

reaction curve. It plots the optimal choices of household h as a function of the collective decisions by all

other households.

Since all households are (by assumption) identical, they all set
(

Ch, G
)

according to (A5.118). The

aggregate economy-wide resource constraint can then be written as:

H = LY + LG = kY HCh + kGG ⇔

1 = kYCh + kG
G

H
. (A5.119)

In the Nash Equilibrium, the economy is at the intersection of the Nash reaction curve and the resource
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Figure 11.3: The Nash reaction curve

constraint. In Figure 11.4, the private subscription Nash equilibrium is at point EM and the equilibrium

public good supply is GM. As we recall from subsection 11.1.2.1, the first-best social optimum calls for:

H

∂U(Ch,G)
∂G

∂U(Ch,G)
∂Ch

=
kG

kY
, (A5.120)

which is a tangency between the resource constraint (A5.119) and an indifference curve: see point ES in

Figure 11.4. It follows that there is an under-supply of public goods in the private subscription equilib-

rium. Intuitively, individual households fail to take into account other agents’ beneficial utility effects

when choosing their own contribution level. (The reader is asked to verify that the first-best equilibrium

can be decentralized as a private subscription equilibrium by means of a Pigouvian subsidy on public

goods plus a lump-sum tax.)

11.2.2 Externalities and public goods

For pure private goods one agent’s consumption of it does not directly affect any other agents’ enjoy-

ment. For pure public goods, in contrast, if one agent provides some of it, then all other agents are also

able to enjoy it. Some private goods can be seen as impure public goods, in that there may be consump-

tion externalities or production externalities. (Note we are talking about direct externalities, not pecuniary

externalities.)

Examples of external effects are easy to come by. For vaccinations, it is typically the case that if

one agent is vaccinated against smallpox then all other agents are (a little) safer as a result. Another
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Figure 11.4: The private subscription equilibrium for public good provision

example of an external effect deals with the interaction between beekeepers and orchard farmers: the

bees fertilize the flowers of the trees and thus increase productivity of the orchard. Education may also

cause significant external effects: a society with an educated population functions more smoothly and

there may be external effects in R&D activities (see Chapter 8). All of the above are examples of positive

consumption / production externalities. Examples of negative externalities are the over-exploitation

of a common property resource (the “tragedy of the commons”) and air- and water pollution as a by-

product of production activities. All these examples can be interpreted as private provision of impure

public goods (or public “bads”).

The objective of this subsection is to demonstrate that the market equilibrium is generally not effi-

cient in the presence of external effects. In addition we show how the policy maker can use corrective

taxation to restore the economy to the Pareto frontier. We use a simple two-good-two-factor general

equilibrium model which is loosely based on the seminal paper by Meade (1952). The key assumptions

of the model are as follows. There are two produced goods (Y1 and Y2) and the output in sector 1 (Y1)

negatively affects household utility, say because its production results in pollution as a by-product. We

use the notation of the general equilibrium model introduced in Chapter 9: there are H households,

F = 2 production factors, and G = 2 goods.

The utility function of household h takes the following form:

Uh = Uh
(

Xh
1 , Xh

2 , Vh
1 , Vh

2 , Y1

)

, (A5.121)

where Uh is utility of household h (1, 2, . . . , H), Xh
g is consumption of good g by household h (g = 1, 2),

Vh
f is the supply of production factor f by household h ( f = 1, 2), and ∂Uh/∂Y1 < 0, i.e. the aggregate
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output of sector 1 negatively affects the household’s utility (say due to pollution). The technology for

good g is summarized by the production functions

Yg = Fg
(

Z
g
1 , Z

g
2

)

, (for g = 1, 2), (A5.122)

where Yg is aggregate production of good g, Fg (·) is the production function for good g, and Z
g
f is factor

f used in the production of good g. The market clearing conditions in the goods and factor markets are:

Yg =
H

∑
h=1

Xh
g , (for g = 1, 2), (A5.123)

H

∑
h=1

Vh
f =

2

∑
g=1

Z
g
f , (for f = 1, 2). (A5.124)

The general equilibrium model is fully characterized by equations (A5.121)-(A5.124).

11.2.2.1 Pareto optimum

In order to find the necessary conditions for Pareto efficiency, we follow the usual procedure by focusing

on an arbitrary household, say household h = 1, holding every other household’s utility constant (i.e.

Uh = Uh
0 for h = 2, . . . , H), and maximizing household 1’s utility subject to the restrictions. The social

planner thus chooses Xh
g , Vh

f , Z
g
f , Yg in order to maximize:

U1 = U1
(

X1
1 , X1

2 , V1
1 , V1

2 , Y1

)

, (A5.125)

subject to (A5.122)-(A5.124) and:

Uh
0 = Uh

(

Xh
1 , Xh

2 , Vh
1 , Vh

2 , Y1

)

, (for h = 2, . . . , H). (A5.126)

The Lagrangian for this problem is:

L ≡ U1
(

X1
1 , X1

2 , V1
1 , V1

2 , Y1

)

+
H

∑
h=2

λh

[

Uh
(

Xh
1 , Xh

2 , Vh
1 , Vh

2 , Y1

)

− Uh
0

]

+
2

∑
g=1

µg

[

Yg − Fg
(

Z
g
1 , . . . , Z

g
F

)
]

+
2

∑
g=1

νg

[
H

∑
h=1

Xh
g − Yg

]

+
2

∑
f=1

ξ f

[
H

∑
h=1

Vh
f −

2

∑
g=1

Z
g
f

]

,

where the Lagrange multipliers are λh (for h = 2, . . . , H), µg (for g = 1, 2), νg (for g = 1, 2), and ξ f

(for f = 1, 2), i.e. there are (H − 1) + 4 + 2 Lagrange multipliers in all. To simplify notation we set

λ1 = 1. The first-order necessary conditions (assuming interior solutions) are the constraints and: (i) for
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the good demands (2H equations):

∂L

∂Xh
1

= λh
∂Uh

∂Xh
1

+ ν1 = 0, (A5.127)

∂L

∂Xh
2

= λh
∂Uh

∂Xh
2

+ ν2 = 0, (A5.128)

(ii) for the factor supplies (2H equations):

∂L

∂Vh
1

= λh
∂Uh

∂Vh
1

+ ξ1 = 0, (A5.129)

∂L

∂Vh
2

= λh
∂Uh

∂Vh
2

+ ξ2 = 0, (A5.130)

(iii) for the output decisions (2 equations):

∂L

∂Y1
=

H

∑
h=1

λh
∂Uh

∂Y1
+ µ1 − ν1 = 0, (A5.131)

∂L

∂Y2
= µ2 − ν2 = 0, (A5.132)

and (iv) for the factor demands (4 equations):

∂L

∂Z1
1

= −µ1
∂F1

∂Z1
1

− ξ1 = 0, (A5.133)

∂L

∂Z1
2

= −µ1
∂F1

∂Z1
2

− ξ2 = 0, (A5.134)

∂L

∂Z2
1

= −µ2
∂F2

∂Z2
1

− ξ1 = 0, (A5.135)

∂L

∂Z2
2

= −µ2
∂F2

∂Z2
2

− ξ2 = 0. (A5.136)

Compared to the case without external effects, the new terms appear in equation (A5.131). In the pollu-

tion causing industry it is no longer the case that µ1 = ν1. Indeed, since λh > 0 and ∂Uh/∂Y1 < 0 it will

be the case that µ1 > ν1.

Next we perform the usual trick by eliminating the various Lagrange multipliers. For an arbitrary

household h we derive the usual expressions:

ν1

ν2
=

∂Uh/∂Xh
1

∂Uh/∂Xh
2

, (A5.137)

ξ1

ξ2
=

∂Uh/∂Vh
1

∂Uh/∂Vh
2

, (A5.138)

ξ f

νg
=

∂Uh/∂Vh
f

∂Uh/∂Xh
g

. (A5.139)
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On the production side we obtain from (A5.133)-(A5.136) that:

ξ1

ξ2
=

∂F1/∂Z1
1

∂F1/∂Z1
2

=
∂F2/∂Z2

1

∂F2/∂Z2
2

, (A5.140)

and from (A5.131)-(A5.136) that:

1 =
ν1 + Φ

ν2

∂F1/∂Z1
f

∂F2/∂Z2
f

, (A5.141)

where Φ is defined as:

Φ ≡ −
H

∑
h=1

λh
∂Uh

∂Y1
= ν1

H

∑
h=1

∂Uh/∂Y1

∂Uh/∂Xh
1

> 0, (A5.142)

and we have also used (A5.127) to get to the second expression on the right-hand side of (A5.142).

We can now combine even further. From (A5.137) and (A5.141) we find:

[
ν1

ν2
=

]
∂Uh/∂Xh

1

∂Uh/∂Xh
2

=
ν1

ν1 + Φ

∂F2/∂Z2
f

∂F1/∂Z1
f

, (A5.143)

from (A5.138) and (A5.140) we obtain:

[
ξ1

ξ2
=

]
∂Uh/∂Vh

1

∂Uh/∂Vh
2

=
∂Fg/∂Z

g
1

∂Fg/∂Z
g
2

, (A5.144)

and from (A5.139) and (A5.131)-(A5.136) we get:

[

−
ξ f

ν1
=

]

−
∂Uh/∂Vh

f

∂Uh/∂Xh
1

=
ν1 + Φ

ν1

∂F1

∂Z1
f

, (A5.145)

[

−
ξ f

ν2
=

]

−
∂Uh/∂Vh

f

∂Uh/∂Xh
2

=
∂F2

∂Z2
f

. (A5.146)

11.2.2.2 Market equilibrium

Does the decentralized economy satisfy Pareto efficiency? The intuitive answer is “no, probably not,

unless the government intervenes” because competitive firms do not take their negative pollution effect

on households into account when making their production decisions. The technical answer is obtained

by spelling out the institutional setting in the decentralized economy and comparing the conditions

characterizing the market equilibrium with the conditions for Pareto optimality. The utility function of

household h is given in (A5.121) and the budget constraint is:

2

∑
g=1

PgXh
g + Th =

2

∑
f=1

W f Vh
f , (A5.147)
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where Pg is the market (consumer) price of good g, W f is the market price of factor f , and Th is the

lump-sum tax levied on household h. The representative competitive firm g faces technology (A5.122)

and maximizes profit Πg (taking Pg and W f as given):

Πg ≡ Pg

(
1 − tg

)
Yg −

2

∑
f=1

W f Z
g
f , (A5.148)

where tg is an ad valorem output tax on good g. Prices and wages are flexible and all markets are

assumed to clear.

The (decentralized) optimizing decisions by households and firms give rise to the following first-

order conditions:

P1

P2
=

∂Uh/∂Xh
1

∂Uh/∂Xh
2

, (A5.149)

W1

W2
=

∂Uh/∂Vh
1

∂Uh/∂Vh
2

, (A5.150)

W f

Pg
= −

∂Uh/∂Vh
f

∂Uh/∂Xh
g

, (A5.151)

W f

W f
=

P1 (1 − t1)

P2 (1 − t2)

∂F1/∂Z1
f

∂F2/∂Z2
f

, (A5.152)

W1

W2
=

∂F1/∂Z1
1

∂F1/∂Z1
2

=
∂F2/∂Z2

1

∂F2/∂Z2
2

, (A5.153)

[
P1

P2
=

]
∂Uh/∂Xh

1

∂Uh/∂Xh
2

=
1 − t2

1 − t1

∂F2/∂Z2
f

∂F1/∂Z1
f

, (A5.154)

[
W1

W2
=

]
∂Uh/∂Vh

1

∂Uh/∂Vh
2

=
∂Fg/∂Z

g
1

∂Fg/∂Z
g
2

, (A5.155)

[
W f

P1
=

]

−
∂Uh/∂Vh

f

∂Uh/∂Xh
1

= (1 − t1)
∂F1

∂Z1
f

, (A5.156)

[
W f

P2
=

]

−
∂Uh/∂Vh

f

∂Uh/∂Xh
2

= (1 − t2)
∂F2

∂Z2
f

. (A5.157)

We observe that (A5.149)-(A5.157) exactly match the Pareto optimality conditions if and only if the out-

put taxes are set according to:

t1 = −
H

∑
h=1

∂Uh/∂Y1

∂Uh/∂Xh
1

> 0, (A5.158)

t2 = 0. (A5.159)
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(The reader is invited to verify that νg = Pg, −ξ f = W f , in combination with (A5.158)-(A5.159) indeed

gives an exact matching of the two sets of first-order conditions.) We close this subsection with a number

of remarks. First, the expression for t1 in (A5.158) is called the Pigouvian Tax (in honour of the great

Cambridge economist Arthur C. Pigou who lived from 1877-1959). This tax restores Pareto efficiency

by internalizing the damaging effects of the pollution. The Pigouvian tax is equal to the sum of the

marginal rates of substitution between the polluting good Y1 in its role of public “bad” and that same

good in its role of private good (Xh
1 ). Second, since good 2 does not cause an external effect there is no

reason to tax it–see equation (A5.159). Third, it cannot be overstressed that the decentralization only

works if there are lump-sum taxes at the disposal of the policy maker. If this is not the case, then there

is an interaction between distorting taxation for revenue raising (and possibly redistribution) purposes

and the correction of externalities. This issue is studied in detail by Sandmo (1975).
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Chapter 12

Intergenerational economics

The purpose of this chapter is to discuss the following topics:

• Definition of pension systems: PAYG, fully funded.

• Reform of the pension system.

• Ageing.

• Labour supply effects.

• Empirics.

12.1 The Diamond-Samuelson model

In this chapter we discuss a number of issues in intergenerational economics. Central in the discus-

sion is a simple model that was formulated by Diamond (1965) using the earlier insights of Samuelson

(1958).1 This model captures both the finite-horizon and life-cycle aspects of household behaviour. The

Diamond-Samuelson model is formulated in discrete time and has been the workhorse model in various

fields of economics for almost four decades. In the remainder of this section we describe (a simplified

version of) the Diamond (1965) model in detail.

12.1.1 Households

Individual agents live for two periods. During the first period (their “youth”) they work and in their

second period (their “old age”) they are retired from the labour force. Since they want to consume in

both periods, agents save during youth and dissave during old age. We abstract from bequests and

assume that the population grows at a constant rate n.

1An even earlier overlapping-generations model was developed by Allais (1947). Unfortunately, due to the non-trivial lan-
guage barrier, it was not assimilated into the Anglo-Saxon literature.

377
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A representative young agent at time t has the following CES lifetime utility function:2

ΛY
t = U

(

CY
t , CO

t+1

)

≡

[

ε
(

CY
t

)1−1/σ
+ (1 − ε)

(

CO
t+1

)1−1/σ
]1/(1−1/σ)

, (A5.1)

where σ is the substitution elasticity between current and future consumption (σ > 0), and 0.5 < ε < 1

captures the notion of pure time preference (see below).3 In (A5.1) the subscript identifies the time

period and the superscript the period of life the agent is in, with “Y” and “O” standing for, respectively,

youth and old age. Hence, CY
t and CO

t+1 denote consumption by an agent born in period t during youth

and old age, respectively, and ΛY
t is lifetime utility of a young agent from the perspective of his birth.

During the first period the agent inelastically supplies one unit of labour and receives a wage Wt

which is spent on consumption, CY
t , and savings, St. In the second period, the agent does not work but

receives interest income on his savings, rt+1St. Principal plus interest are spent on consumption during

old age, CO
t+1. The household thus faces the following budget identities:

CY
t + St = Wt, (A5.2)

CO
t+1 = (1 + rt+1)St. (A5.3)

By substituting (A5.3) into (A5.2) we obtain the consolidated (or lifetime) budget constraint:

Wt = CY
t +

CO
t+1

1 + rt+1
. (A5.4)

The young agent chooses CY
t and CO

t+1 to maximize (A5.1) subject to (A5.4). The first-order conditions

for consumption in the two periods can be combined after which we obtain the familiar consumption

Euler equation:

∂U(CY, CO)/∂CY

∂U(CY, CO)/∂CO
= 1 + rt+1 ⇔

CO
t+1

CY
t

=

(
1 + rt+1

1 + ρ

)σ

, (A5.5)

where ρ ≡ ε/ (1 − ε)− 1 > 0 is the pure rate of time preference. By combining (A5.4) and the second

expression in (A5.5), the following solutions for CY
t and CO

t+1 (and thus St) are obtained:

CY
t = [1 − s (rt+1)]Wt, (A5.6)

CO
t+1

1 + rt+1
= St = s (rt+1)Wt, (A5.7)

2The two-period consumption-saving model was studied in a partial equilibrium setting in Chapter 3 above. In this chapter,
general equilibrium repercussions are taken into account.

3Recall that, for the special case with σ = 1, equation (A5.1) reduces to the Cobb-Douglas form: ΛY
t ≡

(
CY

t

)ε (
CO

t+1

)1−ε
.
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where the savings propensity is defined as:

s (rt+1) ≡
(1 + rt+1)

σ−1

(1 + ρ)σ + (1 + rt+1)
σ−1

. (A5.8)

With homothetic preferences, present and future consumption are both normal goods, i.e. ∂CY
t /∂Wt =

1 − s (rt+1) > 0 and ∂CO
t+1/∂Wt = (1 + rt+1)s (rt+1) > 0. The response of savings with respect to

the interest rate is ambiguous as the income and substitution effects work in opposite directions (see

Chapter 3 for a detailed discussion). On the one hand an increase in rt+1 reduces the relative price

of future goods which prompts the agent to substitute future for present consumption and to increase

savings. On the other hand, the increase in rt+1 expands the budget available for present and future

consumption which prompts the agent to increase both present and future consumption and to decrease

savings.4 Equation (A5.8) shows that the substitution (income) effect dominates and the savings rate

depends positively (negatively) on the interest rate if the substitution elasticity exceeds (falls short of)

unity:

sr (kt+1) ≡
∂s (rt+1)

∂rt+1
=

(σ − 1) (1 − s (rt+1)) (1 + rt+1)
σ−2

(1 + ρ)σ + (1 + rt+1)
σ−1

R 0 ⇔ σ R 1. (A5.9)

12.1.2 Firms

The perfectly competitive firm sector produces output, Yt, by hiring capital, Kt, from the currently old

agents, and labour, Lt, from the currently young agents. The production function is linearly homoge-

neous:

Yt = F(Kt, Lt), (A5.10)

and profit maximization ensures that the production factors receive their respective marginal physical

products (and that pure profits are zero):

Wt = FL(Kt, Lt), (A5.11)

rt + δ = FK(Kt, Lt), (A5.12)

where 0 < δ < 1 is the depreciation rate of capital. The crucial thing to note about (A5.12) concerns

the timing. Capital that was accumulated by the currently old, Kt, commands the rental rate rt + δ. It

follows that the rate of interest upon which the currently young agents base their savings decisions (i.e.

4See Figure 3.1 in Chapter 3 for an illustration of the income and substitution effects associated with an interest rate change.
Note that there is no human wealth effect because the agent does not work during old age.
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rt+1) depends on the future aggregate capital stock and labour force:

rt+1 + δ = FK(Kt+1, Lt+1). (A5.13)

Since the labour force grows at a constant rate and we ultimately wish to study an economy which

possesses a well-defined steady-state equilibrium, it is useful to rewrite (A5.10)-(A5.11) and (A5.13) in

per capita form (see Chapter 8 for details):

yt = f (kt), (A5.14)

Wt = f (kt)− kt f ′(kt), (A5.15)

rt+1 + δ = f ′(kt+1), (A5.16)

where yt ≡ Yt/Lt, kt ≡ Kt/Lt, and f (kt) ≡ F(kt, 1).

12.1.3 Market equilibrium

The resource constraint for the economy as a whole can be written as follows:

Yt + (1 − δ)Kt = Kt+1 + Ct, (A5.17)

where Ct represents aggregate consumption in period t. Equation (A5.17) says that output plus the

undepreciated part of the capital stock (left-hand side) can be either consumed or carried over to the

next period in the form of capital (right-hand side). Alternatively, (A5.17) can be written as Yt = Ct + It

with It ≡ ∆Kt+1 + δKt representing gross investment.

Aggregate consumption is the sum of consumption by the young and the old agents in period t:

Ct ≡ Lt−1CO
t + LtC

Y
t . (A5.18)

Since the old, as a group, own the capital stock, their total consumption in period t is the sum of the

undepreciated part of the capital stock plus the rental payments received from the firms, i.e. Lt−1CO
t =

(rt + δ)Kt + (1 − δ)Kt. For each young agent consumption satisfies (A5.2) so that total consumption by

the young amounts to: LtC
Y
t = WtLt − StLt. By substituting these two results into (A5.18), we obtain:

Ct = (rt + δ)Kt + (1 − δ)Kt + WtLt − StLt

= Yt + (1 − δ)Kt − StLt, (A5.19)

where we have used the fact that Yt = (rt + δ)Kt +WtLt in going from the first to the second line. Output

is fully exhausted by factor payments and pure profits are zero.
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Finally, by combining (A5.17) and (A5.19) we obtain the expression linking this period’s savings

decisions by the young to next period’s capital stock:

StLt = Kt+1. (A5.20)

The population is assumed to grow at a constant rate,

Lt = L0(1 + n)t, n > −1, (A5.21)

so that (A5.20), in combination with (A5.7), can be rewritten in per capita form as:

s(rt+1)Wt = (1 + n)kt+1. (A5.22)

The capital market is represented by the demand for capital by entrepreneurs (equation (A5.16)) and the

supply of capital by households (equation (A5.22)).

12.1.4 Dynamics and stability

The dynamical behaviour of the economy can be studied by substituting the expressions for Wt and

rt+1 (given in, respectively, (A5.15) and (A5.16)) into the capital supply equation (A5.22):

(1 + n)kt+1 = s
(

f ′(kt+1)− δ
) [

f (kt)− kt f ′(kt)
]

. (A5.23)

This expression represents an implicit relationship between the present and future capital stocks per

worker. It is thus suitable to study the stability of the model. By totally differentiating (A5.23) we

obtain:

dkt+1

dkt
=

−s (rt+1) kt f ′′(kt)

1 + n − sr (kt+1)Wt f ′′(kt+1)
, (A5.24)

where s (rt+1), sr (kt+1), and Wt are defined in, respectively, (A5.8), (A5.9), and (A5.15). A steady state

(if it exists) is locally stable if and only if |dkt+1/dkt| < 1. It is clear from (A5.24) that clear-cut results are

hard to come by in the most general version of our model. Although we know that the numerator of

(A5.24) is positive (because s (rt+1) > 0 and f ′′ (kt) < 0), the sign of the denominator is indeterminate

(because sr is ambiguous).

Referring the interested reader to Galor and Ryder (1989) for a rigorous analysis of the most general

case, we take the practical way out by illustrating the existence and stability issues with the unit-elastic

model. Specifically, we assume that technology is Cobb-Douglas, so that yt = k1−ǫL
t , and that the utility

function is logarithmic (σ = 1), so that s (rt+1) = 1/(2 + ρ), the wage rate is Wt = ǫLk1−ǫL
t , and (A5.23)
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Figure 12.1: The unit-elastic Diamond-Samuelson model

becomes:

kt+1 = g(kt) ≡
ǫL

(1 + n)(2 + ρ)
k1−ǫL

t . (A5.25)

Equation (A5.25) has been drawn in Figure 12.1. Since limk→0 g′(k) = ∞ and limk→∞ g′(k) = 0, the

steady state, satisfying k∗ = g(k∗), is unique and stable. The diagram illustrates one stable trajectory

from k0. The tangent of g(·) passing through the steady-state equilibrium point E0 is the dashed line AB.

It follows from the diagram (and indeed from (A5.25)) that the unit-elastic Diamond-Samuelson model

satisfies the stability condition with a positive slope for g(·), i.e. 0 < g′(k∗) < 1.

12.1.5 Efficiency

It is clear from the discussion surrounding Figure 12.1 that there is a perfectly reasonable setting in

which the Diamond-Samuelson model possesses a stable and unique steady-state equilibrium. We now

assume for convenience that our most general model also has this property and proceed to study its

welfare properties. To keep things simple, and to prepare for the discussion of taxations and social

security issues below, we restrict attention to a steady-state analysis. Indeed, following Diamond (1965)

we compare the market solution to the optimal steady state.

In the steady state, the capital-labour ratio is constant over time, i.e. kt+1 = kt = k and Kt, Lt,

and Yt all grow at the rate of population growth (n). Such a balanced growth path is called optimal if

(i) each individual agent has the highest possible utility, and (ii) all agents have the same utility level

(Diamond, 1965, p. 1128). Formally, the optimal balanced growth path maximizes the lifetime utility of
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a “representative” individual,

ΛY ≡ U(CY, CO), (A5.26)

subject to the economy-wide steady-state resource constraint:

f (k)− (n + δ)k = CY +
CO

1 + n
. (A5.27)

Note that we have dropped the time subscripts in (A5.26)-(A5.27) in order to stress the fact that we

are looking at a steady-state situation only.5 An important thing to note about this formulation is the

following. In (A5.26) CY and CO refer, respectively, to consumption during youth and retirement of a

particular individual. In contrast, in (A5.27) CY and CO refer to consumption levels of young and old

agents, respectively, at a particular moment in time. This does, of course, not mean that we are comparing

apples and oranges–for the purposes of selecting an optimal balanced growth path we can ignore these

differences because all individuals are treated symmetrically.

The first-order conditions for the optimal golden-age path consist of the steady-state resource con-

straint (A5.27) and:

∂U(CY, CO)/∂CY

∂U(CY, CO)/∂CO
= 1 + n, (A5.28)

f ′(k) = n + δ. (A5.29)

Samuelson (1968a) calls these conditions, respectively, the biological-interest-rate consumption golden

rule and the production golden rule. Comparing (A5.28)-(A5.29) with their respective market coun-

terparts (A5.5) and (A5.16) reveals that they coincide if the market rate of interest equals the rate of

population growth:

r = f ′(k)− δ = n (golden rule)

As is stressed by Samuelson (1968a, p. 87) the two conditions (A5.28)-(A5.29) are analytically indepen-

dent: even if k is held constant at some suboptimal level, so that production is inefficient as f ′(k) 6= n+ δ,

the optimum consumption pattern must still satisfy (A5.28). Similarly, if the division of output among

generations is suboptimal (e.g. due to a badly designed pension system), condition (A5.28) no longer

holds but the optimal k still follows from the production golden rule (A5.29).

If the steady-state interest rate is less than the rate of population growth (r < n) then there is overac-

cumulation of capital, k is too high, and the economy is dynamically inefficient. A quick inspection of the

unit-elastic model reveals that such a situation is theoretically quite possible for reasonable parameter

5The steady-state resource constraint (A5.27) is obtained as follows. First, (A5.18) is substituted in (A5.17) and the resulting
expression is divided by Lt. Then (A5.14) is inserted, the steady state is imposed (kt+1 = kt = k), and all time indexes are dropped.
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values. Indeed, by computing the steady-state capital-labour ratio from (A5.25) and using the result in

(A5.16) we find that the steady-state interest rate for the unit-elastic model is:

r =
(1 − ǫL)(2 + ρ)(1 + n)

ǫL
− δ. (A5.30)

Blanchard and Fischer (1989, p. 147) suggest the following numbers. Each period of life is 30 years and

the labour share is ǫL = 3/4. Population grows at 1% per annum so n = 1.0130 − 1 = 0.348. Capital

depreciates at 5% per annum so δ = 1 − (0.95)30 = 0.785. With relatively impatient agents, the pure

discount rate is 3% percent per annum, so ρ = (1.03)30 − 1 = 1.427 and (A5.30) shows that r = 0.754

which exceeds n by quite a margin. With more patient agents, whose pure discount rate is 1% percent

per annum, ρ = (1.01)30 − 1 = 0.348 and r = 0.269 which is less than n.

Although dynamic inefficiency cannot be ruled out a priori, empirical studies of the issue typically

find that actual economies are not likely to suffer from this oversaving phenomenon. See, for example,

the study by Abel et al. (1989) for the United States. Unless stated otherwise we will therefore focus

throughout this chapter on the case in which the net interest rate (r − n) is positive.

12.2 Applications of the basic model

In this section we show how the standard Diamond-Samuelson model can be used to study the macro-

economic and welfare effects of old-age pensions. A system of social security was introduced in Ger-

many during the 1880s by Otto von Bismarck, purportedly to stop the increasingly radical working class

from overthrowing his conservative regime. It did not help poor Otto–he was forced to resign from of-

fice in 1890–but the system he helped create stayed. Especially following the Second World War, most

developed countries have similarly adopted social security systems. Typically such a system provides

benefit payments to the elderly which continue until the recipient dies.

In the first subsection we show how the method of financing old-age pensions critically determines

the effects of such pensions on resource allocation and welfare. In the second subsection we study the

effects of a demographic shock, such as an ageing population, on the macroeconomy.

12.2.1 Pensions

In order to study the effects of public pensions we must introduce the government into the Diamond-

Samuelson model. Assume that, at time t, the government provides lump-sum transfers, Zt, to old

agents and levies lump-sum taxes, Tt, on the young. It follows that the budget identities of a young

household at time t are changed from (A5.2)-(A5.3) to:

CY
t + St = Wt − Tt, (A5.31)

CO
t+1 = (1 + rt+1)St + Zt+1, (A5.32)
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so that the consolidated lifetime budget constraint of such a household is now:

Wt − Tt +
Zt+1

1 + rt+1
= CY

t +
CO

t+1

1 + rt+1
. (A5.33)

The left-hand side of (A5.33) shows that lifetime wealth consists of after-tax wages during youth plus

the present value of pension receipts during old age.

Depending on the way in which the government finances its transfer scheme, we can distinguish two

prototypical social security schemes. In a fully funded system the government invests the contributions

of the young and returns them with interest in the next period in the form of transfers to the then old

agents. In such a system we have:

Zt+1 = (1 + rt+1)Tt. (A5.34)

In contrast, in an unfunded or pay-as-you-go (PAYG) system, the transfers to the old are covered by the

taxes of the young in the same period. Since, at time t, there are Lt−1 old agents (each receiving Zt in

transfers) and Lt young agents (each paying Tt in taxes) a PAYG system satisfies Lt−1Zt = LtTt which

can be rewritten by noting (A5.21) as:

Zt = (1 + n)Tt. (A5.35)

12.2.1.1 Fully funded pensions

A striking property of a fully funded social security system is its neutrality. With this we mean that an

economy with a fully funded system is identical in all relevant aspects to an economy without such a

system. This important neutrality result can be demonstrated as follows.

First, we note that, by substituting (A5.34) into (A5.33), the fiscal variables, Tt and Zt+1, disappear

from the lifetime budget constraint of the household. Consequently, these variables also do not affect

the household’s optimal life-cycle consumption plan, i.e. CY
t and CO

t+1 are exactly as in the pension-less

economy described in section 12.1.1 above. It follows, by a comparison of (A5.2) and (A5.31), that with

a fully funded pension system saving plus tax payments are set according to:

St + Tt = s(rt+1)Wt, (A5.36)

where s(rt+1) is the same function as the one appearing in (A5.8).

As a second preliminary step we must derive an expression linking savings of the young to next

period’s stock of productive capital. The key aspect of a fully funded system is that the government

puts the tax receipts from the young to productive use by renting them out in the form of capital goods
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to firms. Hence, the economy-wide capital stock, Kt, is:

Kt = KH
t + KG

t , (A5.37)

where KH
t and KG

t ≡ Lt−1Tt−1 denote capital owned by households and the government, respectively.

The economy-wide resource constraint is still as given in (A5.17) but the expression for total consump-

tion is changed from (A5.19) to:6

Ct = Yt + (1 − δ)Kt − Lt(St + Tt). (A5.38)

Finally, by using (A5.17), (A5.36), and (A5.38) we find that the capital market equilibrium condition

is identical to (A5.22). Since the factor prices, (A5.15)-(A5.16), are also unaffected by the existence of the

social security system, economies with and without such a system are essentially the same. Intuitively,

with a fully funded system the household knows that its contributions, Tt, attract the same rate of return

as its own private savings, St. As a result, the household only worries about its total saving, St + Tt, and

does not care that some of this saving is actually carried out on its behalf by the government.7

12.2.1.2 Pay-as-you-go pensions

Under a PAYG system there is a transfer from young to old in each period according to (A5.35). As-

suming that the contribution rate per person is held constant over time (so that Tt+1 = Tt = T), (A5.35)

implies that Zt+1 = (1 + n)T so that consolidation of (A5.31)-(A5.32) yields the following lifetime bud-

get constraint of a young household:

Ŵt ≡ Wt −
rt+1 − n

1 + rt+1
T = CY

t +
CO

t+1

1 + rt+1
. (A5.39)

This expression is useful because it shows that, ceteris paribus the factor prices, the existence of a PAYG

system contracts (expands) the consumption possibility frontier for young agents if the interest rate

exceeds (falls short of) the growth rate of the population. Put differently, if rt+1 > n (rt+1 < n) the

contribution rate is seen as a lump-sum tax (subsidy) by the young household.

6Equation (A5.38) is derived as follows. Consumption by the old agents is Lt−1CO
t = (rt + δ)KH

t + (1 − δ)KH
t + Lt−1Zt. For

young agents we have LtC
Y
t = Lt [Wt − St − Tt] so that aggregate consumption is:

Ct = (rt + δ)KH
t + (1 − δ)KH

t + Lt−1Zt + Lt [Wt − St − Tt]

= Yt + (1 − δ)KH
t − (rt + δ)KG

t + Lt−1Zt − Lt(St + Tt)

= Yt + (1 − δ)Kt − Lt(St + Tt) +
[

Lt−1Zt − (1 + rt)K
G
t

]

.

This final expression collapses to (A5.38) because the term in square brackets on the right-hand side vanishes:

Lt−1Zt − (1 + rt)K
G
t = Lt−1 [Zt − (1 + rt)Tt−1] = 0.

7An important proviso for the neutrality result to hold is that the social security system should not be too severe, i.e. it should
not force the household to save more than it would in the absence of social security. In terms of the model we must have that
Tt < (1 + n)kt+1 (see Blanchard and Fischer, 1989, p. 111).
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The household maximizes lifetime utility (A5.1) subject to its lifetime budget constraint (A5.39). Cur-

rent and future consumption are set according to:

CY
t = [1 − s (rt+1)] Ŵt, (A5.40)

CO
t+1

1 + rt+1
= s (rt+1) Ŵt, (A5.41)

where s (rt+1) is defined in (A5.8) above. By using (A5.32), (A5.39), and (A5.41) we find that the savings

function can be written as follows:

St = s (rt+1) Ŵt −
1 + n

1 + rt+1
T

= s (rt+1)Wt −
s (rt+1) (1 + rt+1) + [1 − s (rt+1)] (1 + n)

1 + rt+1
T. (A5.42)

Since T, 1 + rt+1, and 1 + n are all positive and the savings rate satisfies 0 < s (rt+1) < 1, it follows that

the term in square brackets on the right-hand side of (A5.42) is positive. To keep matters as simple as

possible we now restrict attention to the simple unit-elastic model for which utility is logarithmic (and

technology is Cobb-Douglas). In that case, the savings rate is constant (s (rt+1) = 1/ (2 + ρ)) and the

savings function simplifies to:

St =
Wt

2 + ρ
−

1 + rt+1 + (1 + ρ) (1 + n)

1 + rt+1

T

2 + ρ
≡ S(Wt, rt+1, T). (A5.43)

It is easy to verify that the partial derivatives of the savings function satisfy 0 < SW < 1, Sr > 0,

−1 < ST < 0 (if rt+1 > n), and ST < −1 (if rt+1 < n).

Since the PAYG pension is a pure transfer from co-existing young to old generations it does not itself

lead to the formation of capital in the economy. Since only private saving augments the capital stock,

equation (A5.20) is still relevant.8 By combining (A5.20) with (A5.43) we obtain the expression linking

the future capital stock to current saving plans:

S(Wt, rt+1, T) = (1 + n)kt+1. (A5.44)

With Cobb-Douglas technology (yt ≡ k1−ǫL
t ) equations (A5.15) and (A5.16) reduce to, respectively,

Wt ≡ W(kt) = ǫLk1−ǫL
t and rt+1 ≡ r(kt+1) = (1 − ǫL)k

−ǫL
t+1 − δ. By using these expressions in (A5.44)

we obtain the fundamental difference equation (in implicit form) characterizing the economy under a

8Consumption by the old agents is Lt−1CO
t = (rt + δ)Kt + (1 − δ)Kt + Lt−1Zt. For young agents we have LtC

Y
t =

Lt [Wt − St − Tt] so that aggregate consumption is:

Ct = (rt + δ)Kt + (1 − δ)Kt + Lt−1Zt + Lt [Wt − St − Tt]

= Yt + (1 − δ)Kt + [Lt−1Zt − LtTt]− LtSt.

This final expression collapses to (A5.19) because the term in square brackets on the right-hand side vanishes under the PAYG
scheme. Combining (A5.17) and (A5.19) yields (A5.20).
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Figure 12.2: PAYG pensions in the unit-elastic model

PAYG system, kt+1 = g(kt, T). The partial derivatives of this function are:

gk ≡
∂g

∂kt
=

SWW ′(kt)

1 + n − Srr′(kt+1)
> 0, (A5.45)

gT ≡
∂g

∂T
=

ST

1 + n − Srr′(kt+1)
< 0, (A5.46)

where SW and Sr are obtained from (A5.43). We illustrate the fundamental difference equation in Figure

12.2.9

In Figure 12.2, the dashed line, labelled “kt+1 = g(kt, 0)” characterizes the standard unit-elastic

Diamond-Samuelson model without social security, i.e. it reproduces Figure 12.1 and point B is the

steady state to which the economy converges in the absence of social security. Suppose now that the

PAYG system is introduced at time t = 0 when the economy has an initial (non-steady-state) capital-

labour ratio of k0. Members of the old generation at time t = 0 cannot believe their luck. They have not

contributed anything to the PAYG system but nevertheless receive a pension of Z = (1 + n)T (see equa-

tion (A5.35)). Since the old do not save this windfall gain is spent entirely on additional consumption.

9The fundamental difference equation can be written as:

(1 + n)kt+1 =
W(kt)− T

2 + ρ
−

1 + ρ

2 + ρ

(1 + n)T

1 + r(kt+1)
.

The second term on the right-hand side vanishes as kt+1 → 0 (since r(kt+1) → +∞ in that case). Hence, W(kMIN) = T. For
kt < kMIN the wage rate is too low (W(kt) < T) and the PAYG scheme is not feasible. By differentiating the fundamental
difference equation we obtain:

dkt+1

dkt
=

W ′(kt)

(1 + n) [2 + ρ + (1 + ρ)Tψ(kt+1)]
≥ 0, ψ(kt+1) ≡

−r′(kt+1)

[1 + r(kt+1)]
2

.

It is straightforward to show that ψ(kt+1) → +∞ for kt+1 → 0, ψ(kt+1) → 0 for kt+1 → ∞, W ′(kt) → 0 for kt → ∞, and
W ′(kMIN) > 0. It follows that g(kt, T) is horizontal in kt = kMIN, is upward sloping for larger values of kt, and becomes horizontal
as kt gets very large. Provided T is not too large there exist two intersections with the kt+1 = kt line.
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Consumption by each old household at time t = 0 is now:

CO
0 = (1 + n)

[
(1 + r(k0))k0 + T

]
, (A5.47)

and, since k0 is predetermined, so is the interest rate and dCO
0 /dT = 1 + n.

In contrast, members of the young generation at time t = 0 are affected by the introduction of the

PAYG system in a number of different ways. On the one hand, they must pay T in the current period

in exchange for which they receive a pension (1 + n)T in the next period. Since the wage rate at time

t = 0, W(k0), is predetermined, the net effect of these two transactions is to change the value of lifetime

resources (Ŵ0 defined in (A5.39)) according to:

∂Ŵ0

∂T
= −

r(k1)− n

1 + r(k1)
⋚ 0, (A5.48)

where the sign is ambiguous because r(k1) may exceed or fall short of the population growth rate n. (Of

course, in the dynamically efficient case, we have that ∂Ŵ0/∂T > 0.) Note that equation (A5.48) only

shows a partial effect because the interest rate depends on the capital stock in the next period (k1), which

is itself determined by the savings behaviour of the young in period t = 0. It follows from (A5.44) and

(A5.46), however, that the total effect of the introduction of the PAYG system is to reduce saving by the

young and thus to reduce next period’s capital stock, i.e. dk1/dT = gT < 0. This adverse effect on the

capital stock is represented in Figure 12.2 by the vertical difference between points A and C.

As a result of the policy shock, the economy now follows the convergent path from C to the ultimate

steady state E0. It follows from Figure 12.2 that kt is less than it would have been without the PAYG

pension, both during transition and in the new steady state (i.e. the path from C to E0 lies below the

path from A to B). Hence, since W ′(x) > 0 and r′(x) < 0, the steady-state wage is lower and the interest

rate is higher than it would have been. The long-run effect on the capital-labour ratio is obtained by

using (A5.44) and imposing the steady state (kt+1 = kt):

dk

dT
=

gT

1 − gk
< 0, (A5.49)

where 0 < gk < 1 follows from the stability condition.

The upshot of the discussion so far is that, unlike a fully funded pension system, a PAYG system is

not neutral but leads to crowding out of capital, a lower wage rate, and a higher interest rate in the long

run. Is that good or bad for households? To answer that question we now study the welfare effect on a

steady-state generation of a change in the contribution rate, T. As in our discussion of dynamic efficiency

above we thus continue to ignore transitional dynamics for the time being by only looking at the steady

state.

To conduct the welfare analysis we need to utilize two helpful tools, i.e. the indirect utility function
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and the factor price frontier. The indirect utility function is defined in formal terms by:

Λ̄Y = V(W, r, T) ≡ max
{CY ,CO}

U(CY, CO) subject to Ŵ = CY +
CO

1 + r
, (A5.50)

where U(CY, CO) is the direct utility function (i.e. equation (A5.1)). The lack of subscripts indicates

steady-state values and Ŵ represents lifetime household resources under the PAYG system:

Ŵ = W −
r − n

1 + r
T. (A5.51)

For example, for the Cobb-Douglas utility function (employed regularly in this chapter) the indirect

utility function takes the following form:

Λ̄Y = ω0(1 + r)1/(2+ρ)Ŵ, (A5.52)

where ω0 ≡ εε (1 − ε)1−ε is a positive constant (and we have used the fact that 1 − ε = 1/ (2 + ρ)).

The indirect utility function (A5.50) has a number of properties which will prove to be very useful

below:10

∂Λ̄Y

∂W
=

∂ΛY

∂CY
> 0, (A5.53)

∂Λ̄Y

∂r
=

S

1 + r

∂ΛY

∂CY
> 0, (A5.54)

∂Λ̄Y

∂T
= −

r − n

1 + r

∂ΛY

∂CY
R 0. (A5.55)

According to (A5.53)-(A5.54), steady-state welfare depends positively on both the wage rate and the

interest rate. Since we saw above that the wage falls (dW/dT = W ′(k)dk/dT < 0) but the interest rate

rises (dr/dT = r′(k)dk/dT > 0) in the long run, the effects of factor prices on welfare work in opposite

directions even in the absence of a PAYG system (if T = 0).

But both W and r depend on the capital-labour ratio (as in the standard neoclassical model) and are

10These properties are derived as follows. We start with the identity V(W, r, T) ≡ U
(
CY(W, r, T), CO(W, r, T)

)
, where

Ci(W, r, T) are the optimal consumption levels during the two periods of life. By using this identity, partially differentiating
(A5.1), and using (A5.5) we obtain:

∂V

∂W
=

∂U

∂CY

[
∂CY

∂W
+

1

1 + r

∂CO

∂W

]

.

It follows from the constraint in (A5.50) that the term in square brackets is equal to unity. Using the same steps we obtain for
∂V/∂r:

∂V

∂r
=

∂U

∂CY

[
∂CY

∂r
+

1

1 + r

∂CO

∂r

]

=
∂U

∂CY

CO − (1 + n)T

(1 + r)2
.

Using CO − (1 + n)T = (1 + r)S we obtain (A5.54). Finally, we obtain for ∂V/∂T:

∂V

∂T
=

∂U

∂CY

[
∂CY

∂T
+

1

1 + r

∂CO

∂T

]

= −
r − n

1 + r

∂U

∂CY
,

where the final result follows from the constraint in (A5.50).
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thus not independent of each other. By exploiting this dependency we obtain the factor price frontier,

Wt = φ(rt), which has a very useful property:

Wt = φ(rt),
dWt

drt
≡ φ′(rt) = −kt. (A5.56)

The slope of the factor price frontier is obtained as follows. In general, by differentiating (A5.15) and

(A5.16) (for rt) we get drt = f ′′(kt)dkt and dWt = −kt f ′′(kt)dkt so that dWt/drt = −kt. From this it

follows that d2Wt/dr2
t = −dkt/drt = −1/ f ′′(kt).11

We now have all the necessary ingredients to perform our welfare analysis. By differentiating the

indirect utility function with respect to T we obtain in a few steps:

dΛ̄Y

dT
=

∂Λ̄Y

∂W

dW

dT
+

∂Λ̄Y

∂r

dr

dT
+

∂Λ̄Y

∂T

=
∂ΛY

∂CY

[
dW

dT
+

S

1 + r

dr

dT
−

r − n

1 + r

]

= −
r − n

1 + r

∂ΛY

∂CY

[

1 + k
dr

dT

]

∝ sgn(n − r), (A5.57)

where we have used (A5.51) and (A5.53)-(A5.55) in going from the first to the second line and (A5.56)

as well as S = (1 + n)k in going from the second to the third line. The term in square brackets on the

right-hand side of (A5.57) shows the two channels by which the PAYG pension affects welfare. The first

term is the partial equilibrium effect of T on lifetime resources and the second term captures the general

equilibrium effects that operate via factor prices.

The expression in (A5.57) is important because it illustrates in a transparent fashion the intimate link

that exists between, on the one hand, the steady-state welfare effect of a PAYG pension and, on the other

hand, the dynamic (in)efficiency of the initial steady-state equilibrium. If the economy happens to be

in the golden-rule equilibrium (so that r = n) then it follows from (A5.57) that a marginal change in the

PAYG contribution rate has no effect on steady-state welfare (i.e. dΛ̄Y/dT = 0 in that case). Since the

yield on private saving and the PAYG pension are the same in that case, a small change in T does not

produce a first-order welfare effect on steady-state generations despite the fact that it causes crowding

out of capital (see (A5.49)) and thus an increase in the interest rate (since r′(k) < 0).

Matters are different if the economy is initially not in the golden-rule equilibrium (so that r 6= n)

because the capital crowding out does produce a first-order welfare effect in that case. For example, if

the economy is initially dynamically inefficient (r < n), then an increase in the PAYG contribution rate

actually raises steady-state welfare! The intuition behind this result, which was first demonstrated in the

pensions context and with a partial equilibrium model by Aaron (1966), is as follows. In a dynamically

11The factor price frontier for the Cobb-Douglas technology is given by:

W = ǫL

(
1 − ǫL

r + δ

)(1−ǫL)/ǫL

,

where the reader should verify the property stated in (A5.56).
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inefficient economy there is oversaving by the young generations as a result of which the market rate

of interest is low. By raising T the young partially substitute private saving for saving via the PAYG

pension. The latter has a higher yield than the former because the biological interest rate, n, exceeds

the market interest rate, r. The reduction in the capital stock lowers the wage but this adverse effect

on welfare is offset by the increase in the interest rate in a dynamically inefficient economy. To put it

bluntly, capital crowding out is good in such an economy.

12.2.1.3 Equivalence PAYG and deficit financing government debt

As was shown by Auerbach and Kotlikoff, a PAYG social security scheme can also be reinterpreted as a

particular kind of government debt policy (1987, pp. 149-150). In order to demonstrate this equivalency

result, we now introduce government debt into the model. This model extension also allows us to

further clarify the link between the pension insights of Aaron (1966) and the macroeconomic effects of

debt as set out by Diamond (1965).

Assume that the government taxes the young generations, provides transfers to the old generations,

and issues one-period (indexed) debt which yields the same rate of interest as capital. Ignoring govern-

ment consumption, the government budget identity is now:

Bt+1 − Bt = rtBt + Lt−1Zt − LtTt, (A5.58)

where Bt is the stock of public debt at the beginning of period t. Interest payments on existing debt

(rtBt) plus transfers to the old are covered by the revenues from the tax on the young and/or additional

debt issues (Bt+1 − Bt).

Because government debt and private capital attract the same rate of return, the household is in-

different about the composition of its savings over these two assets. Consequently, the young choose

consumption in the two periods and total saving in order to maximize lifetime utility (A5.1) subject to

the budget identities (A5.31) and (A5.32). The savings function that results takes the following form:

St = S(Ŵt, rt+1), (A5.59)

where Ŵt is given by the left-hand side of (A5.33) which is reproduced here for convenience:

Ŵt = Wt − Tt +
Zt+1

1 + rt+1
. (A5.60)

It remains to derive the expression linking private savings plans and aggregate capital formation.

There are Lt young agents who each save St so that aggregate saving is StLt. Saving can be in the form



CHAPTER 12: INTERGENERATIONAL ECONOMICS 393

of private capital or public debt. Hence the capital market equilibrium condition is now:12

LtSt = Bt+1 + Kt+1. (A5.61)

We are now in the position to present an important equivalence result which was proved inter alia

by Wallace (1981), Sargent (1987), and Calvo and Obstfeld (1988). Buiter and Kletzer state the equiva-

lence result as follows: “...any equilibrium with government debt and deficits can be replicated by an

economy in which the government budget is balanced period-by-period (and the stock of debt is zero)

by appropriate age-specific lump-sum taxes and transfers” (1992, pp. 27-28). A corollary of the result

is that if the policy maker has access to unrestricted age-specific taxes and transfers then public debt is

redundant in the sense that it does not permit additional equilibria to be supported (1992, p. 28).

The model developed in this subsection is fully characterized (for t ≥ 0) by the following equations:

CO
t = (1 + r(kt))(1 + n)(kt + bt) + Zt, (A5.62)

CO
t+1

CY
t

=

(
1 + r (kt+1)

1 + ρ

)σ

, (A5.63)

W(kt)− Tt − CY
t = (1 + n) [kt+1 + bt+1] , (A5.64)

(1 + n)bt+1 = (1 + r(kt))bt +
Zt

1 + n
− Tt, (A5.65)

where bt ≡ Bt/Lt is per capita government debt and where k0 and b0 are both given. Equation (A5.62) is

consumption of an old household, (A5.63) is the consumption Euler equation for a young household (see

also (A5.5)), (A5.64) is (A5.31) combined with (A5.61), and (A5.65) is the government budget identity

(A5.58) expressed in per capita form. Finally, we have substituted the rental expressions Wt = W(kt)

and rt = r(kt) in the various equations (see equations (A5.15) and (A5.16) above).

The first thing we note is that the fiscal variables only show up in two places in the dynamical system.

In (A5.62) there is a resource transfer from the government to each old household (ΓGO
t ) consisting of

debt service and transfers:

ΓGO
t ≡ (1 + r(kt))(1 + n)bt + Zt. (government to old)

Similarly, in (A5.64) there is a resource transfer from each young household to the government (ΓYG
t ) in

12Consumption by old agents is Lt−1CO
t = (rt + δ)Kt + (1 − δ)Kt + (1 + rt)Bt + Lt−1Zt. For young agents we have LtC

Y
t =

Lt [Wt − Tt − St] so that aggregate consumption is:

Ct = (rt + δ)Kt + (1 − δ)Kt + (1 + rt)Bt + Lt−1Zt + Lt [Wt − Tt − St]

= Yt + (1 − δ)Kt + [(1 + rt)Bt + Lt−1Zt − LtTt]− LtSt

= Yt + (1 − δ)Kt + Bt+1 − LtSt.

By combining the final expression with the resource constraint (A5.17) we obtain (A5.61).
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the form of purchases of government debt plus taxes:

ΓYG
t ≡ (1 + n)bt+1 + Tt. (young to government)

Since there are Lt−1 old and Lt young households, the net resource transfer to the government is LtΓ
YG
t −

Lt−1ΓGO
t = 0, where the equality follows from the government budget constraint (A5.65). Hence, in the

absence of government consumption, what the government takes from the young it must give to the

old. Put differently, once you know ΓYG
t you also know ΓGO

t ≡ (1 + n)ΓYG
t (and vice versa) and the

individual components appearing in the government budget identity (such as bt+1, bt, Zt, and Tt) are

irrelevant for the determination of the paths of consumption and the capital stock (Buiter and Kletzer,

1992, p. 17).

The equivalence result is demonstrated by considering two paths of the economy which, though

associated with different paths for bonds, taxes, and transfers, nevertheless give rise to the same paths

for the real variables, namely the capital stock and consumption by the young and the old. For the

reference path, the sequence {b̂t, Ẑt, T̂t}∞
t=0 gives rise to a sequence for the real variables denoted by

{ĈY
t , ĈO

t , k̂t}∞
t=0 given k0 and b0. We can then show that for any other debt sequence {b̌t}∞

t=1 we can

always find sequences for taxes and transfers {Žt, Ťt}∞
t=0 such that the resulting sequences for the real

variables are the same as in the reference path, i.e. {ĈY
t }

∞
t=0 = {ČY

t }
∞
t=0, {ĈO

t }
∞
t=0 = {ČO

t }
∞
t=0, and

{k̂t}∞
t=0 = {ǩt}∞

t=0.

The key ingredient of the proof is to construct the alternative path such that the resource transfers

from the young to the government (ΓYG
t ) and from the government to the old (ΓGO

t ) are the same for the

two paths. These requirements give rise to the following expressions:

Ẑt − Žt = (1 + n)
[

(1 + r(ǩt))b̌t − (1 + r(k̂t))b̂t

]

, (A5.66)

b̌t+1 − b̂t+1 =
1

1 + n

[
T̂t − Ťt

]
. (A5.67)

By using (A5.66) in (A5.62) and (A5.67) in (A5.64) we find that these equations solve for the same real

variables. As a result, the Euler equation (A5.63) is the same for both paths. Obviously the government

budget identity still holds. Finally, if the reference path satisfies the government solvency condition then

so will the alternative path.

As a special case of the equivalence result we can take as the reference path the PAYG system (studied

above), which has b̂t = 0, T̂t = T, and Ẑt = (1 + n)T for all t. One (of many) alternative paths is the

deficit path in which there are only taxes on the young generations, i.e. Žt = 0, b̌t = (1 + n)T/(1 + rt),

and Ťt = T − (1 + n)b̌t+1 for all t.
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12.2.1.4 From PAYG to a funded system

In the previous subsection we have established the equivalence between traditional deficit financing and

a PAYG social security system. As a by-product of the analysis there we showed how public debt affects

the equilibrium path of the economy. In this section we continue our analysis of the welfare effects of a

PAYG system, first without and then with bond policy.

Up to this point we have only unearthed the welfare effect of a PAYG system on steady-state gener-

ations (see (A5.57)) and we have ignored the initial conditions facing the economy, i.e. we have not yet

taken into account the costs associated with the transition from the initial growth path to the golden-rule

path. As both Diamond (1965, pp. 1128-1129) and Samuelson (1975b, p. 543) stress, ignoring transitional

welfare effects is not a very good idea.

As we argued above, the introduction of a PAYG system (or the expansion of a pre-existing one)

affects different generations differently. The welfare of old generations at the time of the shock unam-

biguously rises because of the windfall gain the shock confers on them. From the perspective of their

last period of life, they gain utility to the tune of U′(CO
1 )dCO

0 /dT = U′(CO
1 ) > 0 (see (A5.47)). The wel-

fare effect on generations born in the new steady state is ambiguous as it depends on whether or not the

economy is dynamically efficient (see (A5.57)). In a dynamically inefficient economy, r < n, all genera-

tions, including those born in the new steady state, gain from the pension shock. Intuitively, the PAYG

system acts like a “chain letter” system which ensures that each new generation passes resources to the

generation immediately preceding it. In such a situation a PAYG system which moves the economy in

the direction of the golden-rule growth path is surely “desirable” for society as a whole.

As was mentioned above, however, actual economies are not likely to be dynamically inefficient

and “free lunches” are not for the taking. If the economy is dynamically efficient, so that r > n, then

it follows from, respectively, (A5.47) and (A5.57) that whilst an increase in T still makes the old initial

generation better off, it leaves steady-state generations worse off than they would have been in the

absence of the shock. Since some generations gain and other lose out, it is no longer obvious whether a

pension-induced move in the direction of the golden-rule growth path is “socially desirable” at all.

There are two ways in which the concept of social desirability, which we have deliberately kept

vague up to now, can be made operational. The first approach, which was pioneered by Bergson (1938)

and Samuelson (1947), makes use of a so-called social welfare function (see also Chapter 9 above). In this

approach, a functional form is typically postulated which relates an indicator for social welfare (SW) to

the welfare levels experienced by the different generations. Using our notation, an example of a social

welfare function would be:

SWt = Ψ(ΛY
t−1, ΛY

t , ...., ΛY
∞), (A5.68)

where Ψs ≡ ∂Ψ/∂ΛY
s > 0 for s = t − 1, t, · · · , ∞. The currently alive generations and all future gen-

erations feature in the social welfare function with a positive weight. Once a particular form for the
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social welfare function is adopted, the social desirability of different policies can be ranked. If policy A

is such that it yields a higher indicator of social welfare than policy B, then it follows that policy A is

socially preferred to policy B (i.e. SWA
t > SWB

t ). Note that, depending on the form of the social welfare

function Ψ(·), it may very well be the case that some generations are worse off under policy A than

under policy B despite the fact that A is socially preferred to B. What the social welfare function does

is establish marginal rates of substitution between lifetime utility levels of different generations (i.e.

(∂w/∂ΛY
t−1)/(∂w/∂ΛY

t ), etc.).13

The second approach to putting into operation the concept of social desirability makes use of the

concept of Pareto-efficiency. Recall that an allocation of resources in the economy is called Pareto-optimal

(or Pareto-efficient) if there is no other feasible allocation which (i) makes no individual in the economy

worse off and (ii) makes at least one individual strictly better off than he/she was. Similarly, a policy

is called Pareto-improving vis-à-vis the initial situation if it improves welfare for at least one agent and

leaves all other agents equally well off as in the status quo.

Recently, a number of authors have applied the Pareto-criterion to the question of pension reform.

Specifically, Breyer (1989) and Verbon (1989) ask themselves the question whether it is possible to abolish

a pre-existing PAYG system (in favour of a fully funded system) in a Pareto-improving fashion in a

dynamically efficient economy. This is a relevant question because in such an economy, steady-state

generations gain if the PAYG system is abolished or reduced (since r > n it follows from equation

(A5.57) that dΛY/dT < 0 in that case) but the old generation at the time of the policy shock loses out

(see (A5.47)). This generation paid into the PAYG system when it was young in the expectation that it

would receive back 1 + n times its contribution during old age. Taken in isolation, the policy shock is

clearly not Pareto-improving.

Of course bond policy constitutes a mechanism by which the welfare gains and losses of the different

generations can be redistributed. This is the case because it breaks the link between the contributions

of the young (LtTt) and the pension receipts by the old in the same period (Lt−1Zt)–compare (A5.35)

and (A5.58). The key issue is thus whether it is possible to find a bond path such that the reduction in

the PAYG contribution is Pareto-improving. As it turns out, no such path can be found. It is thus not

possible to compensate the old generation at the time of the shock without making at least one future

generation worse off (Breyer, 1989, p. 655).

12.2.2 PAYG pensions and endogenous retirement

In a very influential article, Feldstein (1974) argued that a PAYG system not only affects a household’s

savings decisions (as is the case in the model studied up to this point) but also its decision to retire from

the labour force. We now augment the model in order to demonstrate the implications for allocation

and welfare of endogenous retirement. Following the literature, we capture the notion of retirement by

13An application of the social welfare function approach is given in the next subsection.
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assuming that labour supply during the first period of life is endogenous. To keep the model as simple

as possible, we continue to assume that households do not work at all during the second period of life.

To bring the model closer to reality, we assume furthermore that the contribution to the PAYG system is

levied in the form of a proportional tax on labour income and that the pension is intragenerationally fair,

i.e. an agent who works a lot during youth gets a higher pension during old age than an agent who has

been lazy during youth. Within the augmented model it is possible that the PAYG system distorts the

labour supply decisions by households.

12.2.2.1 Households

The lifetime utility function of a (representative) young agent who is born at time t is given in general

form by:

ΛY
t ≡ U(CY

t , 1 − Nt, CO
t+1, ), (A5.69)

where CY
t , CO

t+1, and Nt are, respectively, consumption during youth, consumption during old age, and

labour supply (1 − Nt is leisure). The utility function U(·) features positive first-order derivatives and

is strictly quasi-concave (see Silberberg and Suen, 2001, p. 260). The agent faces the following budget

identities:

CY
t + St = WtNt − Tt, (A5.70)

CO
t+1 = (1 + rt+1)St + Zt+1, (A5.71)

where Tt and Zt+1 are defined as follows:

Tt = tLWtNt, (A5.72)

Zt+1 = tLWt+1Lt+1Nt+1
Nt

NLt
, (A5.73)

where 0 < tL < 1. According to (A5.72), the individual agent’s contribution to the PAYG system is equal

to a proportion of his labour income, where the proportional tax, tL, is assumed to be the same for all

individuals and constant over time. Equation (A5.73) shows that the pension is intragenerationally fair

(as in Breyer and Straub, 1993, p. 81). The term in round brackets on the right-hand side of (A5.73) is the

total tax revenue that is available for pension payments in the next period. Each old agent get a share

of this revenue which depends on his relative labour supply effort, i.e. NLt represents aggregate labour

supply in period t. We assume that the young household takes all variables appearing in (A5.73) as

given, except his own labour supply Nt. Put differently, the household realizes the link between working

hard during youth and receiving a high pension payment during old age.14

14In the symmetric equilibrium, all households supply the same amount of labour and NLt = Nt Lt so that each household’s
share of the pension revenue is equal to 1/Lt. Working directly with this expression would obscure the hypothesized link between
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The household is fully aware of the features of the pension system (as formalized in (A5.72)-(A5.73))

so that the consolidated lifetime budget constraint is given by:

(1 − tEt)WtNt = CY
t +

CO
t+1

1 + rt+1
, (A5.74)

where tEt is defined as follows:

tEt ≡ tL

[

1 −
Wt+1

Wt (1 + rt+1)

Lt+1Nt+1

NLt

]

. (A5.75)

The key thing to note about (A5.74)-(A5.75) is that in the current setting the household’s pension de-

pends not only on future wages but also on the aggregate supply of labour by future young agents. To

solve its optimization problem, the household must thus form expectations regarding these variables

and, as usual, by suppressing the expectations operator we have implicitly assumed that the agent is

blessed with perfect foresight.

In the interior optimum, the first-order conditions for consumption during the two periods and

labour supply are:

∂U

∂CO
t+1

=
1

1 + rt+1

∂U

∂CY
t

, (A5.76)

[

−
∂U

∂Nt
=

]
∂U

∂(1 − Nt)
= (1 − tEt)Wt

∂U

∂CY
t

. (A5.77)

Equation (A5.76) is the familiar consumption Euler equation in general functional form. The optimal

labour supply decision is characterized by (A5.77) and (A5.75). Equation (A5.77) is the usual condition

calling for an equalization of the after-tax wage rate and the marginal rate of substitution between leisure

and consumption during youth. Equation (A5.75) shows to what extent the PAYG system has the poten-

tial to distort the labour supply decision. It is not the statutory tax rate, tL, which determines whether or

not the labour supply decision is distorted but rather the (potentially time-varying) effective tax rate, tEt.

By paying the PAYG premium during youth one obtains the right to a pension. Ceteris paribus labour

supply, the effective tax rate may actually be negative, i.e. it may in fact be an employment subsidy

(Breyer and Straub, 1993, p. 82).

Since all agents of a particular generation are identical in all aspects we can now simplify the model.

In the symmetric equilibrium we have NLt = NtLt and with a constant growth rate of the population it

follows that Lt+1 = (1 + n)Lt. Hence, equation (A5.75) simplifies to:

tEt ≡ tL

[

1 −
Wt+1

Wt

Nt+1

Nt

1 + n

1 + rt+1

]

. (A5.78)

Holding constant labour supply we find that the pension system acts like an employment subsidy (and

pension payments and receipts.
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tEt < 0) if the so-called Aaron condition holds, i.e. if the growth of the population and wages exceeds the

rate of interest (Aaron, 1966).

In the symmetric equilibrium, equations (A5.74) and (A5.76)-(A5.78) define the optimal values of

CY
t , CO

t+1, and Nt as a function of the variables that are exogenous to the representative agent (namely,

Wt, rt+1, and tEt). We write these solutions as CY
t = CY(WN

t , rt+1), CO
t+1 = CO(WN

t , rt+1), and Nt =

N(WN
t , rt+1), where WN

t ≡ Wt(1 − tEt). The (partial-equilibrium) effect of a change in the statutory tax

rate, tL, on the household’s labour supply decision can thus be written in elasticity format as:

tL

Nt

∂Nt

∂tL
= −ǫN

WN

tEt

1 − tEt
, ǫN

WN ≡
WN

N

∂N

∂WN
, (A5.79)

where ǫN
WN is the uncompensated elasticity of labour supply. It follows from (A5.79) that the effect of

the contribution rate on labour supply is ambiguous for two reasons. First, it depends on whether the

Aaron-condition is satisfied (so that tEt < 0) or violated (so that tEt > 0). Second, it also depends on

the sign of ǫN
WN . We recall that ǫN

WN > 0 (< 0) if the substitution effect in labour supply dominates (is

dominated by) the income effect. If labour supply is upward sloping and the Aaron condition is satisfied

then, for given factor prices, an increase in the statutory tax rate decreases labour supply.

12.2.2.2 The macroeconomy

We must now complete the description of the model and derive the fundamental difference equation

for the economic system. We follow the approach of Ihori (1996, pp. 36-37). With endogenous labour

supply, the number of agents (Lt) no longer coincides with the amount of labour used in production

(LtNt). By redefining the capital-labour ratio as kt ≡ Kt/(LtNt), however, the expressions for the wage

and the interest rate are still as in (A5.15)-(A5.16) and the factor price frontier is still as given in (A5.56).

Current savings leads to the formation of capital in the next period, i.e. LtSt = Kt+1. In terms of the

redefined capital-labour ratio we get:

St = (1 + n)Nt+1kt+1. (A5.80)

To characterize this fundamental difference equation we note that the labour supply and savings

equations can be written in general functional form as:

Nt = N(Wt(1 − tEt), rt+1), (A5.81)

S(·) ≡
CO(Wt(1 − tEt), rt+1)− (1 + n)tLWt+1Nt+1

1 + rt+1
. (A5.82)

By using these expressions in (A5.80) we obtain the following expression:

S (Wt(1 − tEt), rt+1, tLWt+1Nt+1) = (1 + n)N(Wt+1(1 − tEt+1), rt+2)kt+1. (A5.83)
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Clearly, since Wt = W(kt) and rt = r(kt), this expression contains the terms kt, kt+1, and kt+2 so one

is tempted to conclude that it is a second-order difference equation in the capital stock. As Breyer and

Straub (1993, p. 82) point out, however, the presence of future pensions introduces an infinite regress

into the model, i.e. since tEt depends on Nt+1 (see (A5.78)), it follows that tEt+1 depends on Nt+2 which

itself depends on kt+2, kt+3, and tEt+2. As a result, (A5.83) depends on the entire sequence of present

and future capital stocks, {kt+τ}∞
τ=0 so that, even though we assume perfect foresight, the model has a

continuum of equilibria.15 Since we assume that the population growth rate is constant, however, we

can skip over the indeterminacy issue by first studying the steady state.

12.2.2.3 The steady state

We study two pertinent aspects of the steady state. First, we show how the endogeneity of labour

supply affects the welfare effect of the PAYG pension. Second, we show that in the unit-elastic model

the pension crowds out capital in the long run. In the steady state, we have that Wt+1 = Wt = W,

Nt+1 = Nt = N, and rt+1 = r so that tEt = (r − n) tL/ (1 + r). As before, the long-run welfare analysis

makes use of the indirect utility function which is defined as follows:

Λ̄Y(W, r, tL) ≡ max
{CY ,CO ,N}

U(CY, CO, 1 − N)

subject to: WN

[

1 − tL
r − n

1 + r

]

= CY +
CO

1 + r
. (A5.84)

Retracing our earlier derivation we can derive the following properties of the indirect utility function:

∂Λ̄Y

∂W
= N

∂ΛY

∂CY

[

1 − tL
r − n

1 + r

]

, (A5.85)

∂Λ̄Y

∂r
=

S

1 + r

∂ΛY

∂CY
, (A5.86)

∂Λ̄Y

∂tL
= −WN

r − n

1 + r

∂ΛY

∂CY
. (A5.87)

The effect of a marginal change in the statutory tax rate on steady-state welfare is now easily computed:

dΛY

dtL
=

∂Λ̄Y

∂W

dW

dtL
+

∂Λ̄Y

∂r

dr

dtL
+

∂Λ̄Y

∂tL

=
∂ΛY

∂CY

[

N

[

1 − tL
r − n

1 + r

]
dW

dtL
+

S

1 + r

dr

dtL
−

r − n

1 + r
WN

]

= −N
r − n

1 + r

∂ΛY

∂CY

[

W + (1 − tL)k
dr

dtL

]

, (A5.88)

15Indeterminacy and multiple equilibria are quite common phenomena in overlapping-generations models of the Diamond-
Samuelson type. Azariadis (1993) gives a general discussion and Reichlin (1986) deals specifically with the case of endogenous
labour supply.
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where we have used (A5.85)-(A5.87) in going from the first to the second line and (A5.56) and (A5.80) in

going from the second to the third line. There are two noteworthy conclusions that can be drawn on the

basis of (A5.88). First, if the economy is initially in the golden-rule equilibrium (r = n), then a marginal

change in tL does not produce a first-order welfare effect on steady-state generations. Intuitively, the

labour supply decision is not distorted because the effective tax on labour is zero in that case (tE =

tL(r − n)/(1 + r) = 0). Second, if the economy is not in the golden-rule equilibrium (r 6= n), then the

sign of the welfare effect is determined by the sign of the term in square brackets on the right-hand

side of (A5.88). Just as for the case with lump-sum contributions (see (A5.57)), the PAYG pension affects

welfare through lifetime resources (first term in brackets) and via the capital-labour ratio (second term).

It turns out, however, that with endogenous labour supply the sign of dr/dtL (and thus the sign of

dΛ̄Y/dtL) is ambiguous (Ihori, 1996, p. 237).

Next we return to the analysis of the model outside the steady state. Matters are simplified quite a

lot if Cobb-Douglas preferences are assumed, i.e. if (A5.69) is specialized to:

ΛY
t ≡ ln CY

t + λC ln(1 − Nt) +
1

1 + ρ
ln CO

t+1, (A5.89)

where ρ is the rate of time preference and λC (≥ 0) regulates the strength of the labour supply effect.

The following solutions for the decision variables are then obtained by maximizing (A5.89) subject to

(A5.74):

CY
t =

1 + ρ

2 + ρ + λC(1 + ρ)
WN

t , (A5.90)

CO
t+1 =

1 + rt+1

2 + ρ + λC(1 + ρ)
WN

t , (A5.91)

Nt =
2 + ρ

2 + ρ + λC(1 + ρ)
, (A5.92)

where WN
t ≡ Wt(1 − tEt) is the effective after-tax wage. In the unit-elastic model, consumption during

youth and old age are both normal goods and labour supply is constant because income and substitution

effects cancel out. Since the current workers know that future workers will also supply a fixed amount

of labour (Nt+1 = Nt = N), the expression for the after-tax wage simplifies to:

WN
t ≡ Wt(1 − tEt) ≡ Wt

[

1 − tL

[

1 −
Wt+1

Wt

1 + n

1 + rt+1

]]

. (A5.93)

Note furthermore that in (A5.90) the presence of pension payments during old age ensures that con-

sumption during youth depends negatively on the interest rate–via the effective tax rate–despite the

fact that logarithmic preferences are used. According to (A5.91) old-age consumption depends posi-

tively on the interest rate and negatively (positively) on the tax rate if the Aaron condition is violated

(holds) tEt > 0 (tEt < 0). Finally, in (A5.92) the standard model is recovered by setting λC = 0, in which
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case labour supply is exogenous and equal to unity (Nt = 1).

We can now determine the extent to which capital is crowded out by the PAYG system. By using

(A5.80), (A5.82), and (A5.91)-(A5.93), the fundamental difference equation for the model can be written

as follows:

(1 + n)kt+1 =
Wt(1 − tL)

2 + ρ
−

1 + ρ

2 + ρ

tL (1 + n)Wt+1

1 + rt+1
. (A5.94)

Since Wt = W(kt) and rt = r(kt), equation (A5.94) constitutes a first-order difference equation in the

capital-labour ratio. Hence, in the unit-elastic model the indeterminacy of the transition path (that was

mentioned above) disappears because the uncompensated labour supply elasticity is zero.

The stability condition and the long-run effect of the PAYG system on the capital-labour ratio are

derived in the usual manner by finding the partial derivatives of the implicit function, kt+1 = g(kt, tL),

around the steady state. After some manipulation we obtain:

gk ≡
∂kt+1

∂kt
=

(1 − tL)W
′

(1 + n)(2 + ρ)
[

1 + tL
1+ρ
2+ρ

(1+r)W ′−Wr′

(1+r)2

] > 0, (A5.95)

gt ≡
∂kt+1

∂tL
= −

W [1 + r + (1 + ρ)(1 + n)]

(1 + r)(1 + n)(2 + ρ)
[

1 + tL
1+ρ
2+ρ

(1+r)W ′−Wr′

(1+r)2

] < 0. (A5.96)

Since gk is positive (as W ′
> 0 > r′), stability requires it to be less than unity (0 < gk < 1). As a result,

the long-run effect on the capital-labour ratio is unambiguously negative in the unit-elastic model:

dk

dtL
=

gt

1 − gk
< 0. (A5.97)

12.2.2.4 Welfare effects

We are now in a position to compare and contrast the key results of this subsection to those that hold

when labour supply is exogenous and the pension contribution is levied in a lump-sum fashion (see

subsection 12.2.1.2). At first view, the assumption of a distorting pension contribution does not seem to

change the principal conclusions very much–at least in the unit-elastic model. In both cases, the PAYG

contribution leads to long-run crowding out of the capital-labour ratio (compare (A5.49) and (A5.97))

and a reduction (increase) in steady-state welfare for a dynamically efficient (inefficient) economy (com-

pare (A5.57) and (A5.88)). Intuitively, this similarity is only moderately surprising in view of the fact

that in the unit-elastic model (optimally chosen) labour supply is constant (see (A5.92)).

There is a very important difference between the two cases, however, because the pension contribu-

tion, tL, causes a distortion of the labour supply decision of households which is absent if the contribu-

tion is levied in a lump-sum fashion. The resulting loss to the economy of using a distorting rather than

a non-distorting tax is often referred to as the deadweight loss (or burden) of the distorting tax (Diamond

and McFadden, 1974, p. 5). Following Diamond and McFadden we define the deadweight loss (DWL)
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Figure 12.3: Deadweight loss of taxation

associated with tL as the difference between, on the one hand, the income one must give a young house-

hold to restore it to its pre-tax indifference curve and, on the other hand, the tax revenue collected from

it (1974, p. 5).

In Figure 12.3 we illustrate the DWL of the pension contribution for a steady-state generation in the

unit-elastic model. We hold factor prices (W and r) constant and assume that the economy is dynami-

cally efficient (r > n). We follow the approach of Belan and Pestieau (1999) by solving the model in two

stages. In the first stage we define lifetime income as:

X ≡ WN

[

1 − tL
r − n

1 + r

]

≡ WN(1 − tE), (A5.98)

and let the household choose current and future consumption in order to maximize:

ln CY +
1

1 + ρ
ln CO, (A5.99)

subject to the constraint CY + CO/(1 + r) = X. This yields the following expressions:

CY =
1 + ρ

2 + ρ
X, CO =

1 + r

2 + ρ
X. (A5.100)

In the right-hand panel of Figure 12.3 the line EE relates old-age consumption to lifetime income. In

that panel the value of consumption during youth can be deduced from the fact that it is proportional

to lifetime income.

By substituting the expressions (A5.100) into, respectively, the utility function (A5.89) and the budget
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constraint (given in (A5.84)) we obtain:

ΛY ≡
2 + ρ

1 + ρ
ln X + λC ln(1 − Nt) + ln

(

1 + ρ

2 + ρ

(
1 + r

2 + ρ

)1/(1+ρ)
)

, (A5.101)

X = WN(1 − tE). (A5.102)

In the second stage, the household chooses its labour supply and lifetime income in order to maximize

(A5.101) subject to (A5.102). The solution to this second-stage problem is, of course, that N takes the

value indicated in (A5.92) and X follows from the constraint. The second-stage optimization problem

is shown in the left-hand panel of Figure 12.3. In that panel, TE represents the budget line (A5.102) in

the absence of taxation (tE = 0). It is downward sloping because we measure minus N on the horizontal

axis. The indifference curve which is tangent to the pre-tax budget line is given by IC and the initial

equilibrium is at E0. In the right-hand panel E0 on the EE line gives the corresponding optimal value for

old-age consumption.

Now consider what happens if a positive effective tax is levied (tE
L > 0). Nothing happens in the

right-hand panel but in the left-hand panel the budget line rotates in a counter-clockwise fashion. The

new budget line is given by the dashed line TE′ from the origin. We know that in the unit-elastic model

income and substitution effects in labour supply cancel out so that labour supply does not change (see

(A5.92)). Hence, the new equilibrium is at E1 in the two panels. By shifting the new budget line in

a parallel fashion and finding a tangency along the pre-tax indifference curve we find that the pure

substitution effect of the tax change is given by the shift from E0 to E2 (the income effect is thus the

shift from E2 to E1). Hence, the vertical distance OB represents the income one would have to give the

household to restore it to its pre-tax indifference curve. We call this hypothetical transfer Z0. What is the

tax revenue which is collected from the agent? To answer that question we draw a line, that is parallel

to the pre-tax budget line TE, through the compensated point E2. This line has an intercept with the

vertical axis at point A. We now have two expressions for lines that both pass through the compensated

point E2, namely X + W(1 − tE
L)(−N) = Z0 and X + W(−N) = Z0 − T, where T is the vertical distance

AB in Figure 12.3. By deducting the two lines we find that T = tEWN so that AB represents the tax

revenue collected from the agent. Since the required transfer is 0B the DWL of the tax is given by the

distance 0A.

12.2.2.5 Reform

As a number of authors have recently pointed out, the distorting nature of the pension system has im-

portant implications for the possibility of designing Pareto-improving reform (see e.g. Homburg, 1990,

Breyer and Straub, 1993, and the references to more recent literature in Belan and Pestieau, 1999). Re-

call from the discussion at the end of section 12.2.1.4 that a Pareto-improving transition from PAYG

to a fully funded system is not possible in the standard model because the resources cannot be found
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to compensate the old generations at the time of the reform without making some future generation

worse off. Matters are different if the PAYG system represents a distorting system. In that case, as

Breyer and Straub (1993) point out, provided lump-sum (non-distorting) contributions can be used dur-

ing the transition phase, a gradual move from a PAYG to a fully funded system can be achieved in a

Pareto-improving manner. Intuitively, by moving from a distortionary to a non-distortionary scheme,

additional resources are freed up which can be used to compensate the various generations (Belan and

Pestieau, 1999).16

12.2.3 The macroeconomic effects of ageing

Up to this point we have assumed that the rate of population growth is constant and equal to n (see

equation (A5.21) above). This simplifying assumption of course means that the age composition of the

population is constant also. A useful measure to characterize the economic impact of demography is

the so-called (old-age) dependency ratio, which is defined as the number of retired people divided by the

working-age population. In our highly stylized two-period overlapping-generations model the number

of old and young people at time t are, respectively, Lt−1 and Lt = (1 + n)Lt−1 so that the dependency

ratio is 1/(1 + n).

Of course, as all members of the baby-boom generation will surely know, the assumption of a con-

stant population composition, though convenient, is not a particularly realistic one. Table 12.1, which is

taken from Weil (1997, p. 970), shows that significant demographic changes have taken place between

1950 and 1990 and are expected to take place between 1990 and 2025.

The figures in Table 12.1 graphically illustrate that throughout the world, and particularly in the

group of OECD countries and in the US, the proportion of young people (0-20 years of age) is on the

decline whilst the fraction of old people (65 and over) steadily increases. Both of these phenomena are

tell-tale signs of an ageing population.

In this subsection we show how the macroeconomic effects of demographic composition changes

can be analysed with the aid of a simple overlapping-generations model. We only stress some of the key

results, especially those relating to the interaction between demography and the public pension system.

The interested reader is referred to Weil (1997) for an excellent survey of the literature on the economics

of ageing.

In the absence of immigration from abroad, population ageing can result from two distinct sources,

namely a decrease in fertility and a decrease in mortality. In the two-period overlapping-generations

model used so far the length of life is exogenously fixed but we can nevertheless capture the notion

of ageing by reducing the rate of population growth, n. In order to study the effects on allocation and

16The distortive nature of the PAYG scheme does not have to result from endogenous labour supply. Demmel and Keuschnigg
(2000), for example, assume that union wage-setting causes unemployment which is exacerbated by the pension contribution.
Efficiency gains then materialize because pension reform reduces unemployment. In a similar vein, Belan et al. (1998) use a
Romer-style (1986, 1989) endogenous growth model and show that reform may be Pareto-improving because it helps to internalize
a positive externality in production. See also Corneo and Marquardt (2000).
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Table 12.1: Age composition of the population

1950 1990 2025
World
0-19 44.1 41.7 32.8
20-65 50.8 52.1 57.5
65+ 5.1 6.2 9.7

OECD
0-19 35.0 27.2 24.8
20-64 56.7 59.9 56.6
65+ 8.3 12.8 18.6

US
0-19 33.9 28.9 26.8
20-65 57.9 58.9 56.0
65+ 8.1 12.2 17.2

welfare of such a demographic shock we first reformulate the model of subsection 12.2.1.2 in terms of a

variable growth rate of the population, nt. Hence, instead of (A5.21) we use:

Lt = (1 + nt)Lt−1, nt > −1. (A5.103)

Assuming a constant contribution rate per person (Tt = T), the pension at time t equals Zt = (1 + nt)T.

Redoing the derivations presented in subsection 12.2.1.2 yields the following fundamental difference

equation of the model:

S(Wt, rt+1, nt+1, T) = (1 + nt+1)kt+1, (A5.104)

where the savings function is the same as in (A5.43) but with nt+1 replacing n. Ceteris paribus, saving by

the young depends negatively on the (expected) rate of population growth, nt+1, because the pension

they receive when old depends on it (as Zt+1 = (1 + nt+1)T). An anticipated reduction in fertility

reduces the expected pension and lifetime income, and causes the agent to cut back on both present and

future consumption and to increase saving. Hence, Sn ≡ ∂S/∂nt+1 < 0. The right-hand side of (A5.104)

shows that a decrease in the population growth rate makes it possible to support a higher capital-labour

ratio for a given amount of per capita saving.

Following the solution method discussed in subsection 12.2.1.2, we can derive that (A5.104) defines

an implicit function, kt+1 = g(kt, nt+1, T), with partial derivatives 0 < gk < 1 (see equation (A5.45)) and

gn < 0:

gn ≡
∂g

∂nt+1
=

Sn − kt+1

1 + nt+1 − Srr′(kt+1)
< 0. (A5.105)
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Figure 12.4: The effects of ageing

It follows that a permanent reduction in the population growth rate, say from n0 to n1, gives rise to an

increase in the long-run capital stock, i.e. dk/dn = gn/(1 − gk) < 0. The transition path of the economy

to the steady state is illustrated in Figure 12.4. In that figure, the dashed line labelled “kt+1 = g(kt, n0)”

reproduces the initial transition path with social security in Figure 12.2 (note that only the stable segment

has been drawn). The reduction in fertility boosts saving at impact so that, if the economy starts out with

a capital stock k0, the new transition path is the dotted line from B to the new equilibrium at E1. During

transition the wage rate gradually rises and the interest rate falls. The intuition behind the long-run

increase in the capital-labour ratio is straightforward. As a result of the demographic shock there are

fewer young households, who own no assets, and more old households, who own a lot of assets which

they need to provide income for their retirement years (Auerbach and Kotlikoff, 1987, p. 163).

The effect of a permanent reduction in fertility on steady-state welfare can be computed by differ-

entiating the indirect utility function (A5.50) with respect to n, using (A5.53)-(A5.54) and (A5.56), and

noting that ∂Λ̄Y/∂n = T∂Λ̄Y/∂CY/(1 + r):

dΛ̄Y

dn
=

∂Λ̄Y

∂W

dW

dn
+

∂Λ̄Y

∂r

dr

dn
+

∂Λ̄Y

∂n

=
∂ΛY

∂CY

[
dW

dn
+

S

1 + r

dr

dn
+

T

1 + r

]

=
∂ΛY

∂CY

[

−k
r − n

1 + r

dr

dn
+

T

1 + r

]

⋚ 0. (A5.106)

In a dynamically efficient economy (for which r > n holds) there are two effects which operate in

opposite directions. The first term in square brackets on the right-hand side of (A5.106) represents the

effect of fertility on the long-run interest rate. Since dr/dn = r′dk/dn > 0, a fall in fertility raises long-

run welfare on that account. The second term in square brackets on the right-hand side of (A5.106)
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is the PAYG-yield effect. If fertility falls so does the rate of return on the PAYG contribution. Since

the yield effect works in the opposite direction to the interest rate effect, the overall effect of a fertility

change is ambiguous. If the PAYG contribution is very small (T ≈ 0) and the economy is not close to the

golden-rule point (r ≫ n), then a drop in fertility raises long-run welfare.

Although our results are based on a highly stylized (and perhaps oversimplified) model, they never-

theless seem to bear some relationship to reality. Indeed, Auerbach and Kotlikoff (1987, ch. 11) simulate

a highly detailed computable general equilibrium model for the US economy and find qualitatively very

similar results: wages rise, the interest rate falls, and long-run welfare increases strongly (see their Table

11.3). In their model, households live for 75 years, labour supply is endogenous, productivity is age-

dependent, households’ retirement behaviour is endogenous, taxes are distorting, and demography is

extremely detailed.

12.3 Extensions

12.3.1 Human capital accumulation

12.3.1.1 Human capital and growth

Following the early contributions by Arrow (1962) and Uzawa (1965), a number of authors have drawn

attention to the importance of human capital accumulation for the theory of economic growth. The key

papers that prompted the renewed interest in human capital in the 1980s are Romer (1986) and Lucas

(1988). In this subsection we show how the Diamond-Samuelson overlapping-generations model can

be extended by including the purposeful accumulation of human capital by households. We show how

this overlapping-generations version of the celebrated Lucas (1988) model can give rise to endogenous

growth in the economy (see also Chapter 8 above).

As in the standard model, we continue to assume that households live for two periods, but we

deviate from the standard model by assuming that the household works full-time during the second

period of life and divides its time between working and training during youth. Following Lucas (1988)

human capital is equated to the worker’s level of skill at producing goods. We denote the human capital

of worker i at time t by Hi
t and assume that producers can observe each worker’s skill level and will thus

pay a skill-dependent wage (just as in the continuous-time model discussed in Chapter 8 above).

The lifetime utility function of a young agent who is born at time t is given in general terms by:

Λ
Y,i
t ≡ ΛY(CY,i

t , CO,i
t+1). (A5.107)

This expression incorporates the notion that the household does not value leisure and attaches no utility

value to training per se. The household is thus only interested in improving its skills because it will
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improve its income later on in life. The budget identities facing the agent are:

CY,i
t + Si

t = WtHi
t Ni

t , (A5.108)

CO,i
t+1 = (1 + rt+1)S

i
t + Wt+1Hi

t+1, (A5.109)

where Wt denotes the going wage rate for an efficiency unit of labour at time t, and Ni
t is the amount of

time spent working (rather than training) during youth. Since the agent has one unit of time available in

each period we have by assumption that Ni
t+1 = 1 (there is no third period of life so there is no point in

training during the second period). The amount of training during youth is denoted by Ei
t and equals:

Ei
t = 1 − Ni

t ≥ 0. (A5.110)

To complete the description of the young household’s decision problem we must specify how train-

ing augments the agent’s skills. As a first example of a training technology we consider the following

specification:

Hi
t+1 = G(Ei

t)Hi
t, (A5.111)

where G′
> 0 ≥ G′′ and G(0) = 1. This specification captures the notion that there are positive but

non-increasing returns to training in the production of human capital and that zero training means that

the agent keeps his initial skill level.

The household chooses CY,i
t , CO,i

t+1, Si
t, Ni

t , and Ei
t in order to maximize lifetime utility Λ

Y,i
t (given in

(A5.107)) subject to the constraints (A5.108)-(A5.110), and given the training technology (A5.111), the

expected path of wages Wt, and its own initial skill level Hi
t. The optimization problem can be solved in

two steps. In the first step the household chooses its training level, Ei
t, in order to maximize its lifetime

income, Ii
t , i.e. the present value of wage income:

Ii
t(Ei

t) ≡ Hi
t

[

Wt(1 − Ei
t) +

Wt+1G(Ei
t)

1 + rt+1

]

. (A5.112)

The first-order condition for this optimal human capital investment problem, taking explicit account of

the inequality constraint (A5.110), is:

dIi
t

dEi
t

= Hi
t

[

−Wt +
Wt+1G′(Ei

t)

1 + rt+1

]

≤ 0, Ei
t ≥ 0, Ei

t
dIi

t

dEi
t

= 0. (A5.113)

This expression shows that it may very well be in the best interest of the agent not to pursue any training

at all during youth. Indeed, this no-training solution will hold if the first inequality in (A5.113) is strict.

Since there are non-increasing returns to training (so that G′(0) ≥ G′(Ei
t) for Ei

t ≥ 0) we derive the
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following implication from (A5.113):

G′(0) <
Wt(1 + rt+1)

Wt+1
⇒ Ei

t = 0. (A5.114)

If the training technology is not very productive (G′(0) low) then the corner solution will be selected.

An internal solution with a strictly positive level of training is such that dIi
t/dEi

t = 0. After some

rewriting we obtain the investment equation in arbitrage format:

Ei
t > 0 ⇒ 1 + rt+1 =

Wt+1

Wt
G′(Ei

t). (A5.115)

This expression shows that in the interior optimum the agent accumulates physical and human capital

such that their respective yields are equalized. By investing in physical capital during youth the agent

receives a yield of 1 + rt+1 during old age (left-hand side of (A5.115)). By working a little less and

training a little more during youth, the agent upgrades his human capital and gains Wt+1G′(Ei
t) during

old age. Expressed in terms of the initial investment (foregone wages in the first period) we get the yield

on human capital (right-hand side of (A5.115)).

In the second step of the optimization problem the household chooses consumption for the two

periods and its level of savings in order to maximize lifetime utility (A5.107) subject to its lifetime budget

constraint:

CY,i
t +

CO,i
t+1

1 + rt+1
= Ii

t , (A5.116)

where Ii
t is now maximized lifetime income. The savings function which results from this stage of the

optimization problem can be written in general form as:

Si
t = S(rt+1, (1 − Ei

t)WtHi
t, Wt+1Hi

t+1). (A5.117)

In order to complete the description of the decision problem of household i we must specify its

initial level of human capital at birth, i.e. Hi
t in the training technology (A5.111). Following Azariadis

and Drazen (1990, p. 510) we assume that each household born in period t “inherits” (is born with)

the average stock of currently available knowledge at that time, i.e. Hi
t = Ht on the right-hand side of

(A5.111). With this final assumption it follows that all individuals in the model face the same interest

rate and learning technology so that they will choose the same consumption, saving, and investment

plans. We can thus drop the individual index i from here on and study the symmetric equilibrium.

We assume that there is no population growth and normalize the size of the young and old popula-

tions to unity (Lt−1 = Lt = 1). Total labour supply in efficiency units is defined as the sum of efficiency

units supplied by the young and the old, i.e. Nt = (1 − Et)Ht + Ht. For convenience we summarize the
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key expressions of the (simplified) Azariadis-Drazen model below.

Nt+1kt+1 = S(rt+1, (1 − Et)WtHt, Wt+1Ht+1) (A5.118)

rt+1 + δ = f ′(kt+1) (A5.119)

Wt = f (kt)− kt f ′(kt) (A5.120)

Nt = (2 − Et)Ht (A5.121)

1 + rt+1 =
Wt+1

Wt
G′(Et) (A5.122)

Ht+1 = G(Et)Ht, (A5.123)

Equation (A5.118) relates saving by the representative young household to next period’s stock of phys-

ical capital. Note that the capital-labour ratio is defined in terms of efficiency units of labour, i.e.

kt ≡ Kt/Nt. With this definition, the expressions for the wage rate and the interest rate are, respectively

(A5.119) and (A5.120). Equation (A5.121) is labour supply in efficiency units, (A5.122) is the invest-

ment equation for human capital (assuming an internal solution), and (A5.123) is the accumulation for

aggregate human capital in the symmetric equilibrium.

It is not difficult to show that the model allows for endogenous growth in the steady state. In the

steady-state growth path the capital-labour ratio, the wage rate, the interest rate, and the proportion of

time spent training during youth, are all constant over time (i.e. kt = k, Wt = W, rt = r, and Et = E). The

remaining variables grow at a common growth rate γ ≡ G(E)− 1. Referring the reader for a general

proof to Azariadis (1993, p. 231), we demonstrate the existence of a unique steady-state growth path

for the unit-elastic model for which technology is Cobb-Douglas (yt = k1−ǫL
t ) and the utility function

(A5.107) is loglinear (ΛY
t = ln CY

t + (1/(1 + ρ)) ln CO
t+1). For the unit-elastic case the savings function

can be written as:

St =

[
1

2 + ρ
(1 − Et)Wt −

1 + ρ

2 + ρ

Wt+1G(Et)

1 + rt+1

]

Ht. (A5.124)

By using (A5.124), (A5.121), and (A5.123) in (A5.118) and imposing the steady state we get an implicit

relationship between E and k for which savings equals investment:

(2 + ρ)
k

W(k)
=

1

2 − E

[
1 − E

G(E)
−

1 + ρ

1 + r(k)

]

. (A5.125)

Similarly, by using (A5.119) and (A5.121) in the steady-state we get a second expression, again relating

E and k, for which the rates of return on human and physical capital are equalized:

[1 + r(k) =] G′(E) = f ′(k) + 1 − δ. (A5.126)

The joint determination of E and k in the steady-state growth path is illustrated in the upper panel of Fig-
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Figure 12.5: Endogenous growth and human capital formation

ure 12.5. The portfolio-balance (PB) line is upward sloping because both the production technology and

the training technology exhibit diminishing returns ( f ′′(k) < 0 and G′′(E) < 0). The savings-investment

(SI) line is downward sloping with Cobb-Douglas technology. The right-hand side of (A5.125) is down-

ward sloping in both k and E. With Cobb-Douglas technology we have that k/W(k) = (1/ǫL)k
ǫL which

ensures that the left-hand side of (A5.125) is increasing in k. Together these result imply that SI slopes

down. In the upper panel the steady state is at E0. In the bottom panel we relate the equilibrium growth

rate to the level of training.

The engine of growth in the Azariadis-Drazen model is clearly the training technology (A5.123) which

ensures that a given steady-state level of training allows for a steady-state rate of growth in the stock of

human capital. Knowledge and technical skills are disembodied, i.e. they do not die with the individual

agents but rather they are passed on in an automatic fashion to the newborns. The newborns can then

add to the stock of knowledge by engaging in training. It should be clear that endogenous growth

would disappear from the model if skills were embodied in the agents themselves. In that case young

agents would have to start all over again and “re-invent the wheel” the moment they are born.

12.3.1.2 Human capital and education

Whilst it is undoubtedly true that informal social interactions can give rise to the transmission of knowl-

edge and skills (as in the Azariadis-Drazen (1990) model) most developed countries have had formal

educational systems for a number of centuries. A striking aspect of these systems is that they are com-

pulsory, i.e. children up to a certain age are forced by law to undergo a certain period of basic training.

This prompts the question why the adoption of compulsory education has been so widespread, even in

countries which otherwise strongly value their citizens’ right to choose.

Eckstein and Zilcha (1994) have recently provided an ingenious answer to this question which stresses



CHAPTER 12: INTERGENERATIONAL ECONOMICS 413

the role of parents in the transmission of human capital to their offspring. They use an extended version

of the Azariadis-Drazen model and show that compulsory education may well be welfare-enhancing to

the children if the parents do not value the education of their offspring to a sufficient extent. The key

insight of Eckstein and Zilcha (1994) is thus that there may exist a significant intra-family external effect

which causes parents to underinvest in their children’s human capital. Note that such an effect is not

present in the Azariadis-Drazen model because in that model the agent himself bears the cost of training

during youth and reaps the benefits during old age.

We now develop a simplified version of the Eckstein-Zilcha model to demonstrate their important

underinvestment result. We assume that all agents are identical. The representative parent consumes

goods during youth and old age (CY
t and CO

t+1, respectively), enjoys leisure during youth (Zt), is retired

during old age, and has 1 + n children during the first period of life. Fertility is exogenous so that the

number of children is exogenously given (n ≥ 0). The lifetime utility function of the young agent at time

t is given in general form as:

ΛY
t ≡ ΛY(CY

t , CO
t+1, Zt, Ot+1), (A5.127)

where Ot+1 ≡ (1 + n)Ht+1 represents the total human capital of the agent’s offspring. Since the agent

has 1 + n kids, each child gets Ht+1 in human capital (knowledge) from its parent. There is no for-

mal schooling system so the parent cannot purchase education services for its offspring in the market.

Instead, the parent must spend (part of its) leisure time during youth to educate its children and the

training function is given by:

Ht+1 = G(Et)H
β
t , (A5.128)

where Et is the educational effort per child, G(·) is the training curve (satisfying 0 < G(0) ≤ 1, G(1) > 1,

G′
> 0 ≥ G′′) and 0 < β ≤ 1. Equation (A5.128) is similar in format to (A5.123) but its interpretation is

different. In (A5.123) Ht+1 and Et are chosen by and affect the same agent. In contrast, in (A5.128) the

parent chooses Ht+1 and Et and the consequences of this choice are felt by both the parent and his/her

offspring.

The agent has two units of time available during youth, one of which is supplied inelastically to

the labour market (Eckstein and Zilcha, 1994, p. 343), and the other of which is spent on leisure and

educational activities:

Zt + (1 + n)Et = 1. (A5.129)
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The household’s consolidated budget constraint is of a standard form:

CY
t +

CO
t+1

1 + rt+1
= WtHt, (A5.130)

where the left-hand side represents the present value of consumption and the right-hand side is labour

income. Competitive firms hire capital, Kt, and efficiency units of labour, Nt ≡ LtHt, from the house-

holds, and the aggregate production function is Yt = F(Kt, Nt). The wage and interest rate then satisfy,

respectively, Wt = FN(Kt, Nt) and rt + δ = FK(Kt, Nt).

The representative parent chooses CY
t , CO

t+1, Zt, Et, and Ht+1 in order to maximize lifetime utility

(A5.127) subject to the training technology (A5.128), the time constraint (A5.129), and the consolidated

budget constraint (A5.130). By substituting the constraints into the objective function and optimizing

with respect to the remaining choice variables (CY
t , CO

t+1, and Et) we obtain the following first-order

conditions:

∂ΛY/∂CY
t

∂ΛY/∂CO
t+1

= 1 + rt+1 (A5.131)

∂ΛY

∂Ot
G′(Et)H

β
t −

∂ΛY

∂Zt
< 0 ⇒ Et = 0 (A5.132)

∂ΛY

∂Ot
G′(Et)H

β
t −

∂ΛY

∂Zt
= 0 ⇐ Et > 0 (A5.133)

Equation (A5.131) is the standard consumption Euler equation, which we encountered time and again,

and (A5.132)-(A5.133) characterizes the optimal educational activities of the parent. The left-hand side

appearing in (A5.132)-(A5.133) represents the net marginal benefit of child education. If the (marginal)

costs outweigh the benefits this term is negative and the parent chooses not to engage in educational

activities at all (see (A5.132)). Conversely, a strictly positive (interior) choice of Et implies that the net

marginal benefit of child education is zero. In the remainder we assume that conditions are such that

Et > 0 is chosen by the representative parent.

A notable feature of the parent’s optimal child education rule (A5.133) is that it only contains the

costs and benefits as they accrue to the parent. But if a child receives a higher level of human capital

from its parents, then it will have a higher labour income and will thus be richer and enjoy a higher

level of welfare. By assumption, however, the parent only cares about the level of education it passes

on to its children and therefore disregards any welfare effects that operate directly on its offspring. This

is the first hint of the under-investment problem. Loosely put, by disregarding some of the positive

welfare effects its own educational activities have on its children, the parent does not provide “enough”

education.

As was explained above, in our discussion regarding pension reform, there are several ways in which

we can tackle the efficiency issue of under-investment in a more formal manner. One way would be to

look for Pareto-improving policy interventions. For example, in the present context one could investi-
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gate whether a system of financial transfers to parents could be devised which (a) would induce parents

to raise their child-educational activities and (b) would make no present or future generation worse off

and at least one strictly better off. If such a transfer system can be found we can conclude that the status

quo is inefficient and there is underinvestment.

An alternative approach, one which we pursue here, makes use of a social welfare function. Follow-

ing Eckstein and Zilcha (1994, pp. 344-345) we postulate a specific form for the social welfare function

(A5.68) which is linear in the lifetime utilities of present and future agents:

SW0 ≡
∞

∑
t=0

λtΛ
Y
t =

∞

∑
t=0

λtΛ
Y(CY

t , CO
t+1, Zt, Ot+1), (A5.134)

where SW0 is social welfare in the planning period (t = 0) and {λt}∞
t=0 is a positive monotonically

decreasing sequence of weights attached to the different generations which satisfies ∑
∞
t=0 λt < ∞. In the

social optimum, the social planner chooses sequences for consumption ({CY
t }

∞
t=0 and {CO

t+1}
∞
t=0), the

stocks of physical and human capital ({Kt+1}
∞
t=0 and {Ht+1}

∞
t=0), and the educational effort ({Et}∞

t=0)

in order to maximize (A5.134) subject to the training technology (A5.128), the time constraint (A5.129),

and the following resource constraint:

CY
t +

CO
t

1 + n
+ (1 + n)kt+1 = F(kt, Ht) + (1 − δ)kt, (A5.135)

where kt ≡ Kt/Lt is capital per worker.

The Lagrangian associated with the social optimization problem is given by:

L0 ≡
∞

∑
t=0

λtΛ
Y(CY

t , CO
t+1, Zt, (1 + n)Ht+1)

−
∞

∑
t=0

µR
t

[

CY
t +

CO
t

1 + n
+ (1 + n)kt+1 − F(kt, Ht)− (1 − δ)kt

]

−
∞

∑
t=0

µT
t [Zt + (1 + n)Et − 1]−

∞

∑
t=0

µH
t

[

Ht+1 − G(Et)H
β
t

]

, (A5.136)

where µR
t , µT

t , and µH
t are the Lagrange multipliers associated with, respectively, the resource constraint,

the time constraint, and the training technology.

After some manipulation we find the following first-order conditions for the social optimum for

t = 0, ..., ∞:

∂L0

∂CY
t

= λt
∂ΛY

∂CY
t

− µR
t = 0, (A5.137)

∂L0

∂CO
t+1

= λt
∂ΛY

∂CO
t+1

−
µR

t+1

1 + n
= 0, (A5.138)

∂L0

∂Zt
= λt

∂ΛY

∂Zt
− µT

t = 0, (A5.139)
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∂L0

∂Et
= −(1 + n)µT

t + µH
t G′(Et)H

β
t = 0, (A5.140)

∂L0

∂Ht+1
= (1 + n)λt

∂ΛY

∂Ot
− µH

t + βµH
t+1G(Et+1)H

β−1
t+1 +

µR
t+1FN(kt+1, Ht+1) = 0, (A5.141)

∂L0

∂kt+1
= −(1 + n)µR

t + µR
t+1 [FK(kt+1, Ht+1) + (1 − δ)] = 0. (A5.142)

By combining (A5.137)-(A5.138) and (A5.142) we obtain the socially optimal consumption Euler

equation:

(1 + n)
µR

t

µR
t+1

=
∂ΛY(x̂t)/∂CY

t

∂ΛY(x̂t)/∂CO
t+1

= FK(k̂t+1, Ĥt+1) + (1 − δ) [≡ 1 + r̂t+1] , (A5.143)

where xt ≡ (CY
t , CO

t+1, Zt, Ot+1), hats (“ˆ”) denote socially optimal values, and r̂t+1 thus represents the

socially optimal interest rate. Similarly, by using (A5.137) for period t + 1 and (A5.138) we obtain an

expression determining the socially optimal division of consumption between old and young agents

living at the same time:

λt+1

λt
= (1 + n)

∂ΛY(x̂t)/∂CO
t+1

∂ΛY(x̂t+1)/∂CY
t+1

. (A5.144)

This expression shows that, by adopting a particular sequence of generational weights {λt}∞
t=0, the

social planner in fact chooses the generational consumption profile between the young and the old (see

Calvo and Obstfeld, 1988, p. 417).

Intermezzo 12.1

Dynamic consistency. There are some subtle issues that must be confronted when using a

social welfare function like (A5.134). If we are to attach any importance to the social planning

exercise we must assume that either one of the following two situations holds:

Commitment The policy maker only performs the social planning exercise once and can

credibly commit never to re-optimize. Economic policy is a one-shot event and no fur-

ther restrictions on the generational weights are needed.

Consistency The policy maker can re-optimize at any time but the generational weights are

such that the socially optimal plan is dynamically consistent, i.e. the mere evolution of

time itself does not make the planner change his mind.

This intermezzo shows how dynamic consistency can be guaranteed in the absence

of credible commitment. We study dynamic consistency in the context of the standard



CHAPTER 12: INTERGENERATIONAL ECONOMICS 417

Diamond-Samuelson model. The social welfare function in the planning period 0 is given in

general terms by:

SW0 ≡ λ0,−1ΛY(CY
−1, CO

0 ) +
∞

∑
τ=0

λ0,τΛY(CY
τ , CO

τ+1), (A)

where λ0,τ is the weight that the planner in time 0 attaches to the lifetime utility of the

generation born in period τ (for τ = −1, 0, 1, 2, ...). The social planner chooses sequences

for consumption during youth and old age ({CY
τ }

∞
τ=0 and {CO

τ }
∞
τ=0) and the capital stock

({kτ+1}
∞
τ=0) in order to maximize social welfare (A) subject to the resource constraint:

CY
τ +

CO
τ

1 + n
+ (1 + n)kτ+1 = f (kτ+1) + (1 − δ)kτ , (B)

and taking the initial capital stock, k0, as given. Obviously, since the past cannot be undone,

consumption during youth of the initially old generation (CY
−1) is also taken as given. After

some straightforward computations we find the following first-order conditions characteriz-

ing the social optimum:

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ)/∂CO
τ+1

= f ′(k̂τ+1) + 1 − δ, (C)

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ−1)/∂CO
τ

=
(1 + n)λ0,τ−1

λ0,τ
, τ = 0, 1, 2, ... (D)

where xτ ≡ (CY
τ , CO

τ+1) and hats denote socially optimal values.

Now consider a planner who performs the social planning exercise at some later planning

period t > 0. The social welfare function in planning period t is:

SWt ≡ λt,t−1ΛY(CY
t−1, CO

t ) +
∞

∑
τ=t

λt,τΛY(CY
τ , CO

τ+1), (E)

where λt,τ is the weight that the planner in time t attaches to the lifetime utility of the gener-

ation born in period τ (for τ = t − 1, t, t + 1, t + 2, ...). The social planner chooses sequences

for consumption during youth and old age ({CY
τ }

∞
τ=t and {CO

τ }
∞
τ=t) and the capital stock

({kτ+1}
∞
τ=t) in order to maximize social welfare (E) subject to the resource constraint (B). The

(interesting) first-order conditions consist of (C) and:

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ−1)/∂CO
τ

=
(1 + n)λt,τ−1

λt,τ
, τ = t, t + 1, t + 2, ... (F)

The crucial thing to note is that conditions (D) and (F) overlap for the time interval τ =

t, t + 1, t + 2, .... The sequences {CY
τ }

t−1
τ=0, {CO

τ }
t−1
τ=0, and {kτ+1}

t−1
τ=0 are chosen by the planner



418 PUBLIC ECONOMICS: TOOLS AND TOPICS

at time 0 but taken as given (“water under the bridge”) by the planner at time t. But the se-

quences {CY
τ }

∞
τ=t, {CO

τ }
∞
τ=t, and {kτ+1}

∞
τ=t are chosen by both planners. Unless the planner

at time 0 can commit to his plan (and thus can stop any future planner from re-optimizing

the then relevant social welfare function), the sequences chosen by the planners at time 0

and at time t will not necessarily be the same. If they are not the same we call the social plan

dynamically inconsistent.

Following the insights of Strotz (1956), Burness (1976) has derived conditions on the ad-

missible pattern of generational weights, λt,τ , that ensure that the optimal social plan is dy-

namically consistent. Comparing (D) and (F) reveals that dynamic consistency requires the

following condition to hold for any planning period t:

λt,τ−1

λt,τ
=

λ0,τ−1

λ0,τ
, τ = t, t + 1, t + 2, ... (G)

Condition (G) means that λt,τ must be multiplicatively separable in time (τ) and the planning

date (t), i.e. it must be possible to write λt,τ = g(t)λτ , where g is some function of t. A simple

example of such a multiplicatively separable function is:

λt,τ =

(
1

1 + λ

)τ−t

, (H)

where λ > 0 is the planner’s constant discount rate. By using (H) we normalize the weight

attached to the young in the planning period to unity (λt,t = 1). It follows necessarily, that

in order to preserve dynamic consistency, there must be reverse discounting applied to the

old generation in the planning period. Indeed, the dynamic consistency requirement (G)

combined with (H) implies λt,τ−1/λt,τ = 1 + λ so that λt,t−1 = (1 + λ)λt,t = 1 + λ. Calvo

and Obstfeld (1988) apply this notion of reverse discounting in the context of the continuous-

time Blanchard (1985) model of overlapping generations.

****

Finally, by using (A5.138)-(A5.140), and (A5.144) in (A5.141) we can derive the following expression:

∂ΛY(x̂t)

∂Zt
= G′(Êt)Ĥ

β
t

[
∂ΛY(x̂t)

∂Ot

+
∂ΛY(x̂t)

∂CO
t+1

FN(k̂t+1, Ĥt+1) (A5.145)

+
β(1 + n)Ĥt+2

G′(Êt+1)Ĥ
1+β
t+1

∂ΛY(x̂t)

∂CO
t+1

∂ΛY(x̂t+1)/∂Zt+1

∂ΛY(x̂t+1)/∂CY
t+1

]

.
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In the social optimum the marginal social cost of educational activities (left-hand side of (A5.145)) should

be equated to the marginal social benefits of these activities (right-hand side of (A5.145)). The marginal

social costs are just the value of leisure time of the parent, but the marginal social benefits consist of three

terms. All three terms on the right-hand side of (A5.145) contain the expression G′(Êt)Ĥ
β
t , which rep-

resents the marginal product of time spent on educational activities in the production of human capital

(see (A5.128)). The first line on the right-hand side of (A5.145) is the “own” effect of educational activ-

ities on the parent’s utility. This term also features in the first-order condition for the privately optimal

(internal) child-education decision, namely (A5.133). The second and third lines show the additional ef-

fects that the social planner takes into account in determining the optimal level of child education. The

second line represents the effect of the parent’s decision on the children’s earnings: by endowing each

child with more human capital they will have a higher skill level and thus command a higher wage.

The third line represents the impact of the parent’s investment on the children’s incentives to provide

education for their own children (i.e. the parent’s grandchildren).

Eckstein and Zilcha are able to prove that (a) the competitive allocation is suboptimal, and (b) that

under certain reasonable assumptions regarding the lifetime utility function there is underinvestment

of human capital. Intuitively, this result obtains because the parents ignore some of the benefits of edu-

cating their children (1994, pp. 345-346). To internalize the externality in the human capital investment

process, the policy maker would need to construct a rule such that the parent’s decision regarding ed-

ucational activities would take account of the effect on the children’s wages and education efforts. As

Eckstein and Zilcha argue, it is not likely that such a complex rule can actually be instituted in the real

world. For that reason, the institution of compulsory education, which is practicable, may well achieve a

welfare improvement over the competitive allocation because it imposes a minimal level of educational

activities on parents (1994, pp. 341, 346).

12.3.2 Public investment

At least since the seminal work by Arrow and Kurz (1970), macroeconomists have known that the

stock of public infrastructure is an important factor determining the productive capacity of an econ-

omy. Somewhat surprisingly, however, the public capital stock has played only a relatively minor role

in the literature up until recently. This unfortunate state of affairs changed dramatically a decade ago

when the pathbreaking and provocative empirical research of Aschauer (1989, 1990b) triggered a verita-

ble boom in the econometric literature on public investment (see Gramlich, 1994 for an excellent survey

of this literature). Aschauer (1989) showed that public capital exerts a strong positive effect on the pro-

ductivity of private capital and argued that the slowdown in productivity growth in the US since the

early 1970s is due to a shortage of investment in public infrastructure. Indeed, his estimates suggest

implicit rates of return on government capital of 100% or more, values which are seen as highly im-

plausible by many commentators (see e.g. Gramlich, 1994, p. 1186). Although Aschauer’s results were
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controversial and many subsequent studies have questioned their robustness, it is nevertheless fair to

conclude that economists generally support the notion that public capital is indeed productive.

In this subsection we show how productive public capital can be introduced into the Diamond-

Samuelson model. We show how the dynamic behaviour of the economy is affected if the government

adopts a constant infrastructural investment policy. Finally, we study how the socially optimal capital

stock can be determined. To keep things simple we assume that labour supply is exogenous, and that

the government has access to lump-sum taxes. We base our discussion in part on Azariadis (1993, pp.

336-340).

Prototypical examples of government capital are things like roads, bridges, airports, hospitals, etc.,

which all have the stock dimension. Just as with the private capital stock, the public capital stock is grad-

ually built up by means of infrastructural investment and gradually wears down because depreciation

takes place. Denoting the stock of government capital by Gt we have:

Gt+1 − Gt = IG
t − δGGt, (A5.146)

where IG
t is infrastructural investment and 0 < δG < 1 is the depreciation rate of public capital. Assum-

ing that the population grows at a constant rate as in (A5.21), per capita public capital evolves according

to:

(1 + n)gt+1 = iG
t + (1 − δG)gt, (A5.147)

where gt ≡ Gt/Lt and iG
t ≡ It/Lt.

We assume that public capital enters the production function of the private sector, i.e. instead of

(A5.10) we have:

Yt = F(Kt, Lt, gt), (A5.148)

where we assume that F(·) is linearly homogeneous in the private production factors, Kt and Lt. This

means that we can express per capita output (yt ≡ Yt/Lt) as follows:

yt = f (kt, gt), (A5.149)

where kt ≡ Kt/Lt and f (kt, gt) ≡ F(Kt/Lt, 1, gt). We make the following set of assumptions regarding

technology:

fk ≡
∂ f

∂kt
> 0, fg ≡

∂ f

∂gt
> 0, (P1)

fkk ≡
∂2 f

∂k2
t

< 0, fgg ≡
∂2 f

∂g2
t

< 0, (P2)
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f (0, gt) = f (kt, 0) = 0, (P3)

fkg ≡
∂2 f

∂kt∂gt
> 0, (P4)

fg − k fkg > 0. (P5)

Private and public capital both feature positive (property (P1)) but diminishing marginal productivity

(property (P2)). Both types of capital are essential in production, i.e. output is zero if either input

is zero (property (P3)). Finally, properties (P4)-(P5) ensure that public capital is complementary with

both private capital and labour. This last implication can be seen by noting that perfectly competitive

firms hire capital and labour according to the usual rental expressions rt + δ = FK(Kt, Lt, gt) and Wt =

FL(Kt, Lt, gt). These can be expressed in per capita form as:

rt = r(kt, gt) ≡ fk(kt, gt)− δ, (A5.150)

Wt = W(kt, gt) ≡ f (kt, gt)− kt fk(kt, gt), (A5.151)

where 0 < δ < 1 is the depreciation rate of the private capital stock. We can deduce from Properties

(P4)-(P5) that rk ≡ ∂r/∂kt < 0 and Wk ≡ ∂W/∂kt > 0 (as in the standard model) and rg ≡ ∂r/∂gt > 0

and Wg ≡ ∂W/∂gt > 0 (public capital positively affects both the interest rate and the wage rate). To

illustrate the key properties of the model we shall employ a simple Cobb-Douglas production function

below of the form Yt = K1−ǫL
t LǫL

t g
η
t , with 0 < η < ǫL < 1. This function satisfies properties (P1)-(P5)

and implies W(kt, gt) = ǫLk1−ǫL
t g

η
t and r(kt, gt) = (1 − ǫL)k

−ǫL
t g

η
t − δ.

To keep things simple, we assume that the representative young agent has the following lifetime

utility function:

ΛY
t = ln CY

t +
1

1 + ρ
ln CO

t+1. (A5.152)

The budget identities facing the household are:

CY
t + St = Wt − TY

t , (A5.153)

CO
t+1 = (1 + rt+1)St − TO

t+1, (A5.154)

where TY
t and TO

t+1 are lump-sum taxes paid by the agent during youth and old age respectively. The

consolidated budget constraint is:

Ŵt ≡ Wt − TY
t −

TO
t+1

1 + rt+1
= CY

t +
CO

t+1

1 + rt+1
, (A5.155)

where Ŵt is after-tax non-interest lifetime income. The optimal household choices are CY
t = cŴt and

CO
t+1/(1 + rt+1) = (1 − c)Ŵt, where c ≡ (1 + ρ)/(2 + ρ). The savings function can then be written as
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follows:

St ≡ S(Wt, rt+1, TY
t , TO

t+1) = (1 − c)
(

Wt − TY
t

)

+ c
TO

t+1

1 + rt+1
. (A5.156)

It follows that, ceteris paribus, lump-sum taxes during youth reduce private saving whilst taxes during

old age increase saving. As before, private saving by the young is next period’s stock of private capital,

i.e. LtSt = Kt+1. In per capita form we have:

St = (1 + n)kt+1. (A5.157)

The government budget constraint is very simple and states that government infrastructural invest-

ment (IG
t ) is financed by tax receipts from the young and the old, i.e. IG

t = LtT
Y
t + Lt−1TO

t which can be

written in per capita form as:

iG
t = TY

t +
TO

t

1 + n
. (A5.158)

We now have a complete description of the economy. The key expressions are the accumulation

identity for the public capital stock (A5.147), the government budget constraint (A5.158), and the ac-

cumulation expression for private capital. The latter can be written in the following format by using

(A5.150), (A5.151), and (A5.156) in (A5.157):

(1 + n)kt+1 = (1 − c)
[

W(kt, gt)− TY
t

]

+
cTO

t+1

1 + r(kt+1, gt+1)
. (A5.159)

Once a path for public investment and a particular financing method are chosen, (A5.158) and (A5.159)

describe the dynamical evolution of the public and private capital stocks. We derive the phase diagram

for the case of Cobb-Douglas technology and a constant public investment policy (so that iG
t = iG for

all t) financed by taxes on only the young generations (so that TY
t = iG and TO

t = 0 for all t). The

consequences of alternative assumptions regarding financing are left as an exercise for the reader.

The phase diagram has been drawn in Figure 12.6. The GE line is the graphical representation of

(A5.147) for the constant public investment policy iG
t = iG, i.e. along the line we have gt+1 = gt. The

GE line is horizontal and defines a unique steady-state equilibrium value for the stock of public capital

equal to g = iG/(n + δG). The dynamics for public capital are derived from the rewritten version of

(A5.147):

gt+1 − gt =
iG − (n + δG)gt

1 + n
= −

n + δG

1 + n
[gt − g] , (A5.160)

from which we conclude that for points above (below) the GE line, gt > g (< g) and the public capital

stock falls (rises) over time, gt+1 < gt (> gt) . This (stable) dynamic pattern has been illustrated with
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kt

E0

gt

A
! !
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0

g GE: gt+1 = gt

KE: kt+1 = kt

kA k

!

A

k*

Figure 12.6: Public and private capital

vertical arrows in Figure 12.6.

The KE line in Figure 12.6 is the graphical representation of (A5.159), with the constant investment

policy and the financing assumption both substituted in and imposing the steady state, kt+1 = kt. For

the Cobb-Douglas technology, the KE line has the following form:

gt =

(
1 + n

ǫL(1 − c)

)1/η [

kǫL
t + iG 1 − c

1 + n
kǫL−1

t

]1/η

, (A5.161)

from which we derive that limkt→0 gt = limkt→∞ gt = ∞ and that gt reaches its minimum value along

the KE curve for kt = k∗, where k∗ is defined as:

k∗ ≡ iG 1 − c

1 + n

1 − ǫL

ǫL
. (A5.162)

Hence, the KE line is as drawn in Figure 12.6. There are two steady-state equilibria (at A and E0, respec-

tively). The dynamics of the private capital stock are obtained by rewriting (A5.159) as:

kt+1 − kt =
1 − c

1 + n

(

ǫLk1−ǫL
t g

η
t − iG

)

− kt, (A5.163)

and noting that ∂[kt+1 − kt]/∂gt > 0. Hence, since the wage rate increases with public capital and future

consumption is a normal good, private saving increases with gt. Hence, the capital stock is increasing

(decreasing) over time for points above (below) the KE line. These dynamic forces have been illustrated

with horizontal arrows in Figure 12.6.

It follows from the configuration of arrows (and from a formal local stability analysis of the linearized

model) that the low-private-capital equilibrium at A is a saddle point whereas the high-private-capital
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equilibrium at E0 is a stable node. For the latter equilibrium it holds that, regardless of the initial stocks

of private and public capital, provided the economy is close enough to E0 it will automatically return to

E0.

What about the steady-state equilibrium at A? Is it stable or unstable? In the typical encounters

that we have had throughout this book with two-dimensional saddle-point equilibria, we called such

equilibria stable because there always was one predetermined and one non-predetermined variable. By

letting the non-predetermined variable jump onto the saddle path, stability was ensured. For example,

in Chapter 4 we studied the Ramsey growth model and showed that the capital stock and the consump-

tion are, respectively, the predetermined and jumping variable. In the present application, however,

both K and G are predetermined variables so neither can jump. Only if the initial stocks of private and

public capital by pure coincidence happen to lie on the saddle path (SP in Figure 12.6), will the equi-

librium at A eventually be reached given the constant investment policy employed by the government.

Appealing to the Samuelsonian correspondence principle we focus attention in the remainder of this

subsection on the truly stable equilibrium at E0.

Now consider what happens if the government increases its public investment. It follows from,

respectively (A5.160) and (A5.161), that both the GE and KE lines shift up. Clearly, the higher public

investment level will lead to a higher long-run stock of public capital, i.e. dg/diG = 1/(n + δG) > 0.

The long-run effect on the private capital stock is ambiguous and depends on the relative scarcity of

public capital. By imposing the steady state in (A5.163) and differentiating we obtain:

[

1 −
1 − c

1 + n
Wk

]
dk

diG
=

1 − c

1 + n

[

Wg
dg

diG
− 1

]

, (A5.164)

where the term in square brackets on the left-hand side is positive because the model is outright stable

around the initial steady-state equilibrium E0.17 The first term in square brackets on the right-hand side

represents the positive effect on the pre-tax wage of the young households whilst the second term is the

negative tax effect. Since Wg = ηW/g, W = ǫLy, and g = iG/(n + δG), it follows from (A5.164) that the

steady-state private capital stock rises (falls) as a result of the shock if iG/y < ηǫL (> ηǫL), i.e. if public

capital is initially relatively scarce (abundant).

12.3.2.1 Modified golden rules

Now that we have established the macroeconomic effects of public capital, we can confront the equally

important question regarding the socially optimal amount of public infrastructure. Just as in the previ-

ous subsection on education, we study this issue by computing the public investment plan that a social

17Recall that for a constant level of public capital, the model is stable provided the following stability condition is satisfied
around the initial steady state, E0:

0 <
∂kt+1

∂kt
≡

1 − c

1 + n
Wk < 1.
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planner would choose. Following Calvo and Obstfeld (1988, p. 414) and Diamond (1973, p. 219) we

assume that the social welfare function takes the following Benthamite form (see also Chapter 9 above):

SW0 ≡

(
1 + n

1 + ρG

)−1

ΛY(CY
−1, CO

0 ) +
∞

∑
t=0

(
1 + n

1 + ρG

)t

ΛY(CY
t , CO

t+1), (A5.165)

where we assume that ρG < n. Equation (A5.165) is a special case of (A5.134) with the generational

weight set equal to λt ≡ [(1 + n)/(1 + ρG)]
t. This means that the social planner discounts the lifetime

utility of generations at a constant rate ρG which may or may not be equal to the rate employed by the

agents to discount their own periodic utility (namely ρ). The social planner chooses sequences for con-

sumption for young and old ({CY
t }

∞
t=0 and {CO

t }
∞
t=0), the per capita stocks of public and private capital

({gt+1}
∞
t=0 and {kt+1}

∞
t=0), in order to maximize (A5.165) subject to the following resource constraint:

CY
t +

CO
t

1 + n
+ (1 + n) [kt+1 + gt+1] = f (kt, gt) + (1 − δ)kt + (1 − δG)gt, (A5.166)

and taking as given k0 and g0. The Lagrangian associated with the social optimization problem is given

by:

L0 ≡

(
1 + n

1 + ρG

)−1

ΛY(CY
−1, CO

0 ) +
∞

∑
t=0

(
1 + n

1 + ρG

)t

ΛY(CY
t , CO

t+1)

−
∞

∑
t=0

µR
t

[

CY
t +

CO
t

1 + n
+ (1 + n) [kt+1 + gt+1]− f (kt, gt)

−(1 − δ)kt − (1 − δG)gt

]

, (A5.167)

where µR
t is the Lagrange multiplier associated with the resource constraint.

After some manipulation we find the following first-order conditions for the social optimum for

t = 0, ..., ∞:

∂L0

∂CY
t

=

(
1 + n

1 + ρG

)t ∂ΛY(xt)

∂CY
t

− µR
t = 0, (A5.168)

∂L0

∂CO
t

=

(
1 + n

1 + ρG

)t−1 ∂ΛY(xt−1)

∂CO
t

−
µR

t

1 + n
= 0, (A5.169)

∂L0

∂gt+1
= −(1 + n)µR

t + µR
t+1

[
fg(kt+1, gt+1) + 1 − δG

]
= 0, (A5.170)

∂L0

∂kt+1
= −(1 + n)µR

t + µR
t+1 [ fk(kt+1, gt+1) + 1 − δ] = 0, (A5.171)

where xt ≡ (CY
t , CO

t+1). By combining (A5.168)-(A5.171) to eliminate the Lagrange multipliers we find



426 PUBLIC ECONOMICS: TOOLS AND TOPICS

some intuitive expressions characterizing the social optimum:

∂ΛY(x̂t)/∂CY
t

∂ΛY(x̂t)/∂CO
t+1

= fk(k̂t+1, ĝt+1) + 1 − δ = fg(k̂t+1, ĝt+1) + 1 − δG, (A5.172)

∂ΛY(x̂t)/∂CY
t

∂ΛY(x̂t−1)/∂CO
t

= 1 + ρG, (A5.173)

where hatted variables once again denote socially optimal values. The first equality in (A5.172) is

the socially optimal consumption Euler equation calling for an equalization of, on the one hand, the

marginal rate of substitution between present and future consumption and, on the other hand, the

socially optimal gross interest factor, 1 + r̂t+1, where r̂t+1 ≡ fk(k̂t+1, ĝt+1) − δ. The second equal-

ity in (A5.172) says that the socially optimal stock of public capital per worker should be such that

the yields on private and public capital are equalized, i.e. ĝt+1 should be set in such a way that

r̂G
t+1 = r̂t+1, where r̂G

t+1 ≡ fg(k̂t+1, ĝt+1) − δG. Finally, equation (A5.173) determines the socially op-

timal intratemporal division of consumption. Its intuitive meaning, and especially the interplay be-

tween the agent’s and the planner’s discount rate, can best be understood by considering the case

of intertemporally separable preferences (which has been used throughout this chapter). By using

ΛY
t (xt) ≡ U(CY

t ) + (1 + ρ)−1U(CO
t+1) we can rewrite (A5.173) in terms of the agent’s felicity function

(U(·)) and the pure rate of time preference (ρ):

U′(ĈY
t )

U′(ĈO
t )

=
1 + ρG

1 + ρ
. (A5.174)

It follows from (A5.174) that if the planner’s discount rate exceeds (falls short of) the agent’s rate of time

preference, ρG > ρ (< ρ), then the social planner ensures that U′(ĈY
t ) exceeds (falls short of) U′(ĈO

t ),

and thus (since U′′
< 0) that ĈY

t falls short of (exceeds) ĈO
t . If ρG = ρ, the planner chooses the egalitarian

solution (ĈO
t = ĈY

t ).

Intermezzo 12.2

Calvo-Obstfeld two-step procedure. Calvo and Obstfeld (1988) have shown that with in-

tertemporally separable preferences, the social planning problem can be solved in two stages.

In the first stage, the planner solves a static problem and in the second stage a dynamic

problem is solved. Their procedure works as follows. Aggregate consumption at time τ,

expressed per worker, is defined as:

Cτ ≡ CY
τ +

1

1 + n
CO

τ (A)

With intertemporally separable preferences (and ignoring a constant like U(CY
−1)) the social
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welfare function in period t can be rewritten as:

SWt ≡
1 + ρG

(1 + n)(1 + ρ)
U
(

CO
t

)

+
∞

∑
τ=t

(
1 + n

1 + ρG

)τ−t [

U
(

CY
τ

)

+

(
1

1 + ρ

)

U
(

CO
τ+1

)]

=
∞

∑
τ=t

(
1 + n

1 + ρG

)τ−t [

U
(

CY
τ

)

+
1 + ρG

(1 + n)(1 + ρ)
U
(

CO
τ

)]

, (B)

where the term in square brackets in (B) now contains the weighted felicity levels of old and

young agents living in the same time period. The special treatment of period-t felicity of the

old is to preserve dynamic consistency (see the Intermezzo above). We can now demonstrate

the two-step procedure.

In the first step, the social planner solves the static problem of dividing a given level of

aggregate consumption, Cτ , over the generations that are alive at that time:

Ū(Cτ) ≡ max
{CY

τ ,CO
τ }

[

U
(

CY
τ

)

+
1 + ρG

(1 + n)(1 + ρ)
U
(

CO
τ

)]

, s.t. (A), (C)

where Ū(Cτ) is the (indirect) social felicity function. The first-order condition associated

with this optimization problem is:

U′(CY
τ )

U′(CO
τ )

=
1 + ρG

1 + ρ
, (D)

which is the same as (A5.174). Furthermore, by differentiating (C) and using (A) and (D) we

find the familiar envelope property:

Ū′(Cτ) ≡
dŪ(Cτ)

dCτ
= U′(CY

τ ). (E)

For the special case of logarithmic preferences, for example, individual felicity is U(x) ≡ ln x

and the social felicity function would take the following form:

Ū(Cτ) = ln

(
(1 + n)(1 + ρ)Cτ

(1 + n)(1 + ρ) + 1 + ρG

)

+
1 + ρG

(1 + n)(1 + ρ)
ln

(
(1 + n)(1 + ρG)Cτ

(1 + n)(1 + ρ) + 1 + ρG

)

≡ ω0 +
(1 + n)(1 + ρ) + 1 + ρG

(1 + n)(1 + ρ)
ln Cτ . (F)

In the second step the social planner chooses sequences of aggregate consumption and the
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two types of capital in order to maximize social welfare:

SWt =
∞

∑
τ=t

(
1 + n

1 + ρG

)τ−t

Ū(Cτ), (G)

subject to the initial conditions (kt and gt given) and the resource constraint:

Cτ + (1 + n) [kτ+1 + gτ+1] = f (kτ , gτ) + (1 − δ)kτ + (1 − δG)gτ , (H)

where we have used (A) in (A5.166) to get (H). Letting µR
τ denote the Lagrange multiplier

for the resource constraint in period τ we obtain the following first-order conditions:

(1 + n)µR
τ

µR
τ+1

= fk(kt+1, gt+1) + 1 − δ = fg(kt+1, gt+1) + 1 − δG, (I)

µR
τ =

(
1 + n

1 + ρG

)τ−t

Ū′(Cτ). (J)

By using (J) for period t + 1 and noting (D) and (E) we find that (I) coincides with (A5.172).

****

We now return to the general first-order conditions (A5.172)-(A5.173) and study the steady state. In

the steady state we have CY
t = CY, CO

t = CO, kt = k, gt = g, and x̂t = x̂ for all t so that (A5.172)-(A5.173)

simplify to:

∂ΛY(x̂)/∂CY
t

∂ΛY(x̂)/∂CO
t

= 1 + ρG, (A5.175)

[r̂ ≡] fk(k, g)− δ = ρG = fg(k, g)− δG [≡ r̂G] . (A5.176)

Equation (A5.175) calls for an optimal division of consumption over the young and the old. The first

equality in (A5.176) is the modified golden rule (MGR) equating the steady-state yield on the private capital

stock (the steady-state rate of interest) to the rate of time preference of the social planner. There is

an important difference between this version of the MGR and the one encountered in Chapter 8 in

the context of the Ramsey representative-agent model. In the OLG setting, the planner’s rate of time

preference features in the MGR whereas in the Ramsey model the representative agent’s own rate of time

preference is relevant.

The second equality in (A5.176) is a modified golden rule for public capital that was initially derived

by Pestieau (1974). It calls for an equalization of the public rate of return and the planner’s rate of time

preference. The two equalities in (A5.176) together determine the optimal per worker stocks of public

and private capital. For example, for Cobb-Douglas technology we have yt = k1−ǫL
t g

η
t (with η < ǫL) so



CHAPTER 12: INTERGENERATIONAL ECONOMICS 429

that k/y = (1 − ǫL)/(ρG + δ), g/y = η/(ρG + δG). It follows from these results that output per worker

is:

y =

[(
k

y

)1−ǫL
(

g

y

)η
]1/(ǫL−η)

=

[(
1 − ǫL

ρG + δ

)1−ǫL
(

η

ρG + δG

)η
]1/(ǫL−η)

(A5.177)

Now that we have characterized the necessary conditions for the steady-state social optimum, a rel-

evant question concerns the decentralization of this optimum. Can the policy maker devise a set of policy

tools in such a way that the private sector choices concerning consumption and private capital accumu-

lation coincide exactly with their respective values in the social optimum? The answer is affirmative

provided the policy maker has access to the right kind of policy instruments. In the present context,

for example, the first-best social optimum can be mimicked in the market place if (i) the level of public

investment (and thus the public capital stock) is chosen to be consistent with (A5.176), and (ii) there are

age-specific lump-sum taxes available (see Pestieau, 1974 and Ihori, 1996, p. 114). The latter instrument

is needed to ensure that the market replicates the socially optimal mix of consumption by the young and

the old (cf. (A5.175)).

12.3.3 Intergenerational accounting

One of the most hotly debated concepts in policy circles has been the correct definition and measure-

ments of the government budget deficit. Simply put, there exists a fundamental ambiguity in the con-

cept of the deficit. Auerbach, Gokhale, and Kotlikoff (1991, p. 57) give the most radical statement of

the problem to date by arguing that “...every dollar the government takes in or pays out is labeled in a

manner that is economically arbitrary”. They suggest doing away with the concept of the government

deficit altogether and to focus instead on what they label the generational accounts. The background to

their proposal is the notion that “[t]he conceptual issue associated with the word ‘deficit’ is the inter-

generational distribution of welfare” (Auerbach et al., 1991, p. 57) and that the intertemporal budget

constraint of the government should be the focus of attention. In words, this constraint says that “the

government’s current net wealth plus the present value of the government’s net receipts from all current

and future generations (the generational accounts) must be sufficient to pay for the present value of the

government’s current and future consumption” (1991, p. 58).

Auerbach et al. (1991, 1994) claim a number of advantages that a system of generational accounts

has over the traditional government budget deficit: (i) generational accounts are invariant to changes

in accounting labels, (ii) they bring out the zero-sum feature of the intertemporal government budget

constraint (what some generation gets will have to be paid for by some other generation), and (iii) they

can be used to study the fiscal and intergenerational consequences of alternative policies

In this subsection we follow Buiter (1997) by illustrating the system of generational accounts in a

simple version of the Diamond-Samuelson model. Assuming that the population is constant and nor-
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malized to unity (so that Lt−1 = Lt = 1), the government (flow) budget identity is given by:

Bt+1 = (1 + rt)Bt + GO
t + GY

t − TO
t − TY

t , (A5.178)

where TO
t and TY

t are the taxes paid by the old and young respectively, and GO
t and GY

t are pure public

consumption goods that the government provides free of charge to, respectively, the old and the young.

Following Buiter (1997, p. 607) we assume that these public goods are non-rival and non-excludable.

Iterating (A5.178) forward in time yields the following expression:

Bt =
T

∏
s=0

1

1 + rt+s
Bt+T+1 +

T

∑
τ=0

τ

∏
s=0

1

1 + rt+s

[

TO
t+τ + TY

t+τ −
(

GO
t+τ + GY

t+τ

)]

≡ Rt−1,TBt+T+1 +
T

∑
τ=0

Rt−1,τ

[

TO
t+τ + TY

t+τ −
(

GO
t+τ + GY

t+τ

)]

, (A5.179)

where Rt−1,τ is a discounting factor:

Rt−1,τ =
τ

∏
s=0

1

1 + rt+s
. (A5.180)

By letting T → ∞ in (A5.179) we find that the government NPG condition is:

lim
T→∞

Rt−1,TBt+T+1 = 0, (A5.181)

so that the government budget constraint is:

Bt =
∞

∑
τ=0

Rt−1,τ

[

TO
t+τ + TY

t+τ −
(

GO
t+τ + GY

t+τ

)]

. (A5.182)

If there is government debt outstanding at time t (Bt > 0 on the left-hand side of (A5.182)), then the

solvent government must ultimately run primary surpluses. Note that (A5.181) does not require the

government to pay off its debt eventually. All that solvency requires is that government debt must not

grow faster in the long run than the rate of interest.

The household sector is standard. Households consume during youth and old age (CY
t and CO

t+1, re-

spectively), practise consumption smoothing by saving (St) which can be in the form of physical capital

or government bonds. The relevant expressions characterizing the household sector are:

CY
t + St = Wt − TY

t , (A5.183)

CY
t+1 = (1 + rt+1)St − TO

t+1, (A5.184)

St = Bt+1 + Kt+1. (A5.185)

Equations (A5.183)-(A5.185) are the same as (A5.153)-(A5.154) and (A5.185) is the same as (A5.61) but
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with the size of the (young) population set equal to unity (Lt = 1). The consolidated budget constraint

facing households is obtained in the usual manner by combining (A5.183) and (A5.184):

CY
t +

CO
t+1

1 + rt+1
= Wt − Tt,t, (A5.186)

where Tt,t is the present value of (lump-sum) taxes that a generation born in period t (second subscript)

must pay over the course of its life seen from the perspective of period t (first subscript):

Tt,t ≡ TY
t +

TO
t+1

1 + rt+1
. (A5.187)

We can now develop the generational accounts for existing and future generations by decomposing

the government budget constraint (A5.182). Because it is very easy indeed to get tangled up in the

different subscripts identifying time and generations we show some of the details of the derivation.18

First we note that by using (A5.180) equation (A5.182) can be written as follows:

Bt =
1

1 + rt

[

TO
t + TY

t

]

+
1

1 + rt
·

1

1 + rt+1

[

TO
t+1 + TY

t+1

]

+
1

1 + rt
·

1

1 + rt+1
·

1

1 + rt+2

[

TO
t+2 + TY

t+2

]

+
1

1 + rt
·

1

1 + rt+1
·

1

1 + rt+2
·

1

1 + rt+3

[

TO
t+3 + TY

t+3

]

+ ....

−
∞

∑
τ=0

Rt−1,τ

[

GO
t+τ + GY

t+τ

]

. (A5.188)

Next we look for terms pertaining to the same generation and group these together:

Bt =
1

1 + rt
TO

t +
1

1 + rt

[

TY
t +

TO
t+1

1 + rt+1

]

+
1

1 + rt
·

1

1 + rt+1

[

TY
t+1 +

TO
t+2

1 + rt+2

]

+
1

1 + rt
·

1

1 + rt+1
·

1

1 + rt+2

[

TY
t+2 +

TO
t+3

1 + rt+3

]

+ ....

−
∞

∑
τ=0

Rt−1,τ

[

GO
t+τ + GY

t+τ

]

. (A5.189)

In the first line of (A5.189) we find the remaining taxes to be paid by the old at time t and the lifetime

taxes, Tt,t, of the young at time t. Both these terms are, however, expressed in present-value terms, i.e.

they are discounted back to the end of period t − 1. The same holds for all the other terms pertaining

18A more direct derivation makes use of the fact that the discount factor in (A5.180) satisfies the following property:

Rt−1,τ+1 =
1

1 + rt+τ+1
Rt−1,τ .

Using this property in (A5.182) yields (A5.189) in a single step.
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to future generations (namely the second and third lines in (A5.189)). The reason for this discounting

is that Bt is debt at the beginning of period t (which was accumulated at the end of period t − 1), over

which interest must be paid at the beginning of period t.

Equation (A5.189) gives the generational accounts for the different generations. The first line contains

the accounts for the two existing generations at time t, whilst lines two and three contain the genera-

tional accounts for future generations. Kotlikoff and co-authors often write the generational accounts in

a more compact format as:

Bt +
∞

∑
τ=0

Rt−1,τ

[

GO
t+τ + GY

t+τ

]

=
∞

∑
k=t−1

Tt−1,k, (A5.190)

where the Tt−1,k terms are defined as follows:

Tt−1,t−1 ≡
1

1 + rt
TO

t , (existing old)

Tt−1,t ≡
1

1 + rt
Tt,t =

1

1 + rt

[

TY
t +

TO
t+1

1 + rt+1

]

, (existing young)

Tt−1,k ≡ Rt−1,k−1Tk,k = Rt−1,k−t

[

TY
k +

TO
k+1

1 + rk+1

]

, (future generations)

where k = t + 1, t + 2, .... Equation (A5.190) says that the sum of outstanding government debt plus

the present value of government consumption (left-hand side) must equal the sum of the generational

accounts of existing and future generations (right-hand side).

Having completed our description of the generational accounting system in the context of the Diamond-

Samuelson model we can now turn to an actual empirical implementation of the method. Auerbach et

al. (1991, pp. 65-75) explain in detail how the method of generational accounting can be applied to

actual economies. Table 12.2 contains the 1991 generational accounts for US males. (This table is an

abbreviated version of Table 1 of Auerbach et al., 1994, p. 80.) Of course, for the method to have any

practical use, an actual implementation must contain much more detail than is contained in our stylized

model. Table 12.2 therefore distinguishes ten (rather than just two) existing generations and gives the

accounts for males only because females are different in labour force participation, family structure, and

mortality. (Auerbach et al., 1994, give figures for nineteen five-year cohorts and also present genera-

tional accounts for females.) Furthermore, Auerbach et al. allow for transfers, distorting taxes etc. that

were abstracted from in the stylized model.

In Table 12.2 the first column gives the age of the particular generation of US males in 1991, e.g. the

row marked ‘0’ pertains to agents born in 1991 whereas the row marked ‘40’ gives the data for agents

who were 40 years of age in 1991 (who were thus born in 1951). The second column gives the net

generational accounts for the different generations whilst the third and fourth columns distinguishe,

respectively, the underlying tax payments and transfer receipts. A positive entry in the second column
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Table 12.2: Male generational accounts

Generation’s Net Tax Transfer
age in 1991 payments payments receipts

×$1000 ×$1000 ×$1000
0 78.9 99.3 20.4
10 125.0 155.3 30.3
20 187.1 229.6 42.5
30 205.5 258.5 53.0
40 180.1 250.0 69.9
50 97.2 193.8 96.6
60 -23.0 112.1 135.1
70 -80.7 56.3 137.0
80 -61.1 30.2 91.3
90 -3.5 8.8 12.3

Future 166.5

means that the particular generation will pay more in present value to the government than it will

receive. For example, for a 40–year old male in 1991, the present value of taxes to be paid during his

remaining lifetime amount to $250,000 whilst the present value of transfers is $69,900. In contrast, a

70-year old in 1991 has a negative generational account of $80,700 because the present value of transfers

(on disability, health, and welfare transfers) far exceeds the present value of taxes.

The final row labelled ‘Future’ in Table 12.2 gives the generational account for the typical future

generation. For future generations, the generational account measures the present value of net payments

over their entire lives. Since the same holds for newborns in 1991, the figures for newborns and future

generations can be meaningfully compared. As Auerbach et al. (1994, p. 82) point out, there is a striking

generational imbalance in US fiscal policy in the sense that future newborns have a generational account

of $166,500, which is a whopping $87,600 more than newborns in 1991 have to pay.

12.3.3.1 Discussion

Buiter (1997) agrees with the proponents of the generational accounting method that the traditional

measure of the government deficit is a meaningless indicator for the effects of fiscal policy not only on

aggregate demand and private saving but also on the intergenerational distribution of resources. He is

nevertheless quite critical of the method of generational accounting. Buiter’s objections centre on the

following three issues. First, the usefulness of generational accounts “lives or dies with the validity

of the life-cycle model” (1997, p. 606), of which the Diamond model is a simple representation. The

validity of the life-cycle model depends critically on the following assumptions (which must all hold):

(i) households have finite lives, (ii) generations are not linked via operative bequests, and (iii) markets

are complete (no borrowing constraints). If condition (ii) is violated and Ricardian equivalence is valid
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(see Chapter 8), then the generational accounts are completely uninformative about the effect of the

government budget on both the intergenerational distribution of resources and on saving (see Buiter,

1997, p. 612 and Bohn, 1992). A similar conclusion follows if condition (iii) is violated and households

face binding liquidity constraints because in that case the timing of tax payments over the life cycle

matters (in addition to the present value of these taxes).

Second, even if the strict life-cycle model is valid, generational accounts should be interpreted quite

carefully. Indeed, existing applications of the generational accounting method say nothing about the in-

tergenerational distribution of benefits from government spending on public goods. Take, for example,

the case of a government abatement programme aimed at cleaning up the natural environment. If the

environment improves only slowly over time, future generations may be the principal beneficiaries of

the policy measure even though the current generations have paid for it. In generational accounts, the

tax payments associated with the programme feature prominently but the benefits to future generations

are not included.

Third, the method of generational accounting does not take into account the general equilibrium

repercussions of alternative budgetary policies. In particular, the method ignores (i) the endogeneity of

the various tax (and subsidy) bases and (ii) the endogeneity of pre-tax factor prices and incomes. Buiter

gives several examples for which the general equilibrium effects turn out to be quite important (1997,

pp. 616-622).19

In principle all the issues raised above can be studied with the aid of a computable dynamic general

equilibrium model although the construction of such a model is clearly not a trivial task. On the one

hand, such models can readily deal with the general equilibrium repercussions of alternative budgetary

policies (see Auerbach and Kotlikoff, 1987) and can be extended to include all kinds of market imperfec-

tions and alternative intergenerational linkages. One the other hand, there are huge practical difficulties

in quantifying the (intergenerational) welfare effects of public spending. In this context, the method of

generational accounting is valuable because its data can provide some of the inputs needed for a realistic

simulation model.

Key literature

• Heijdra & Van der Ploeg (2002, ch. 17), Jha (1998, ch. 5), or Myles (1995, ch. 14) on theory.

• Feldstein and Liebman (2002) on theory and empirics.

• Lindbeck and Persson (2003) on pension reform.

• Renstrom (1998) on optimal taxation in OLG setting.

19Fehr and Kotlikoff (1995), on the other hand, present a number of general equilibrium examples where the generational
accounting method appears to work quite well.
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• From FoMM: Samuelson (1975a, 1975b) and Feldstein (1974, 1976, 1985, 1987). In recent years a

large literature has been developed on the issue of pension system reform. See Diamond (1997,

1999), Feldstein (1997, 1998), and Sinn (2000). For a recent survey on the economic effects of age-

ing, see Bosworth and Burtless (1998). The Diamond-Samuelson model has been generalized in a

number of directions. Barro (1974) studies intergenerational linkages. Jones and Manuelli (1992)

consider the growth effects of finite lives. Tirole (1985) and O’Connell and Zeldes (1988) consider

the possibility of asset bubbles. Grandmont (1985) presents a model exhibiting endogenous busi-

ness cycles. Michel and de la Croix (2000) study the model properties under both myopic foresight

and perfect foresight. Bierwag, Grove, and Khang (1969) show that a full set of age-specific taxes

renders debt policy redundant. Abel (1986) and Zilcha (1990, 1991) introduce uncertainty into

the model. On intergenerational risk sharing, see Gordon and Varian (1988). Barro and Becker

(1989) present a model of endogenous fertility. For applications of endogenous fertility models,

see Wildasin (1990), Zhang (1995), Robinson and Srinivasan (1997), and Nerlove and Raut (1997).

Galor (1992) and Nourry (2001) study a two-sector version of the Diamond-Samuelson model.

The Diamond-Samuelson model has been applied in a large number of fields. For public finance

applications, see Auerbach (1979a), Kotlikoff and Summers (1979), and Ihori (1996). On the economics

of education, see Loury (1981), Glomm and Ravikumar (1992), Zhang (1996), Buiter and Kletzer (1993),

and Kaganovich and Zilcha (1999). Environmental policy applications include Howarth (1991, 1998),

Howarth and Norgaard (1990, 1992), John and Pecchenino (1994), John et al. (1995), and Mourmouras

(1993).

There is a large literature on generational accounting. Some key references are Auerbach, Gokhale,

and Kotlikoff (1991, 1994), Kotlikoff (1993a, 1993b), and Fehr and Kotlikoff (1995). For critical papers on

the topic, see Bohn (1992), Haveman (1994), and Buiter (1997). International applications of the method

are collected in Auerbach, Kotlikoff, and Leibfritz (1999).

12.4 Punchlines

??? Key points restated simply
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Further Reading

??? What should interested students read?



Chapter 13

Chapter 13: Rent seeking

The purpose of this chapter is to discuss the following topics:

• Theory of rent-seeking

• Applications: pollution taxation, privatisation, growth

13.1 First section

??? Bla Bla

Intermezzo 13.1

Title of the intermezzo. ??? bla bla bla ???

****

13.2 Second section

??? Bla Bla
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13.3 Punchlines

??? Key points restated simply
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Further Reading

??? What should interested students read?

Key Literature

• The collected works by Brooks and Heijdra (1987, 1988, 1989, 1990) on theory and applications.

Outline of the Chapter

??? Ideas about the outline of the chapter here
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Chapter 14

Social Insurance

The purpose of this chapter is to discuss the following topics:

• Systems of social insurance

• Incentive effects.

• Labour supply.

• Empirics.

14.1 First section

??? Bla Bla

Intermezzo 14.1

Title of the intermezzo. ??? bla bla bla ???

****

14.2 Second section

??? Bla Bla
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14.3 Punchlines

??? Key points restated simply
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Further Reading

??? What should interested students read?

Key Literature

• Krueger and Meyer (2002) on theory and empirics.

• Moffitt (2002) on theory and empirics.

Outline of the Chapter

??? Ideas about the outline of the chapter here
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Chapter 15

Redistribution

The purpose of this chapter is to discuss the following topics:

• Demand for redistribution.

• Supply of redistribution.

• Reforming the welfare state.

• Empirics.

15.1 First section

??? Bla Bla

Intermezzo 15.1

Title of the intermezzo. ??? bla bla bla ???

****

15.2 Second section

??? Bla Bla
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15.3 Punchlines

??? Key points restated simply



CHAPTER 15: REDISTRIBUTION 447

Further Reading

??? What should interested students read?

Key Literature

• Boadway and Keen (2002) on theory and empirics.

Outline of the Chapter

??? Ideas about the outline of the chapter here
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